
D5.3.2 Final simulated users

Morgan Fredriksson, Jürgen Königsmann,

Johan Boye

Distribution: Public

Spacebook
Spatial & Personal Adaptive Communication Environment:

 Behaviours & Objects & Operations & Knowledge

Deliverable 5.3.2

2013-08-31

Project ref. no.
Project acronym
Project full title

Instrument
Thematic
Start date / duration

270019
Spacebook
Spatial & Personal Adaptive Communication Environment:
Behaviours & Objects & Operations & Knowledge

STREP
Priority Cognitive Systems, Interaction, and Robotics
01 March 2011 / 36 Months

Security
Contractual date of delivery
Actual date of delivery
Deliverable number
Deliverable title
Type
Status & version
Number of pages
Contributing WP
WP/Task responsible
Other contributors
Author(s)
EC Project Officer
Keywords

Public
M30 = 2013-08-31
2013-08-31
D5.3.2
Final simulated users
Report
1.0
13
5
LM
KTH
Morgan Fredriksson, Jürgen Königsmann, Johan Boye
Franco Mastroddi
Simulated user, dialogue system

The partners in Spacebook are:

Umea University UMU
University of Edinburgh HCRC UE
Heriot-Watt University HWU
Kungliga Tekniska Högskolan KTH
Liquid Media AB LM
University of Cambridge UCAM
Universitat Pompeu Fabra UP

For copies of reports, updates on project activities and other Spacebook-related information, contact:

The Spacebook Project Co-ordinator:
Dr. Michael Minock
Department of Computer Science
Umea University ˚
Sweden 90187
mjm@cs.umu.se
Phone +46 70 597 2585 - Fax +46 90 786 6126

Copies of reports and other material can also be accessed via the project’s administration homepage,
http://www.Spacebook-project.eu

© 2013, The Individual Authors.
No part of this document may be reproduced or transmitted in any form, or by any means, electronic or
mechanical, including photocopy, recording, or any information storage and retrieval system, without permission
from the copyright owner.

mailto:mjm@cs.umu.se
mailto:mjm@cs.umu.se
http://www.spacebook-project.eu
http://www.spacebook-project.eu

Contents

...Executive Summary 1

..1. Introduction 2

...2. Simulated pedestrians 2

..3. Cognitive module 3

..4. Spatial module 4

.....................................5. Communication between Cognitive and Spatial modules 4

..6. GUI 5

...7. Visibility calculations 8

..8. Walk-path calculations 10

..9. Final remarks 12

..10. References 13

Executive Summary
This report describes the implemented simulated users for the Spacebook domain.
These simulated users are capable of simulating movement in any city covered by
OpenStreetMap, to understand natural language route instructions, to ask for
information, and to pursue both long-term and short-term goals.

1. Introduction
This report describes the implemented simulated users for the Spacebook domain.
These simulated users are capable of simulating movement in any city covered by
OpenStreetMap, to understand natural language route instructions, to ask for
information, and to pursue both long-term and short-term goals. In order to do
this, the simulated users are implemented as a set of communicating modules: a
spatial module performing collision detection, visibility calculations and low-level
planning of walk-paths; a high-level cognitive decision-making module carrying
out the natural-language dialogue as well as generating and maintaining the
simulated pedestrian’s goals; a natural-language parser and generator; and a
graphical interface.

To be useful, a simulated user should accurately imitate a real user in some
important regard. In order to do this, it is necessary to define a model of the user
by a set of state variables that determine the state of the simulation, a set of
actions the simulated user can perform, a set of inputs it can interpret, and a
transition function that map state-input pairs to state-action pairs. This transition
function may itself be learned from data or it may be hand-coded; in either case,
the produced behaviour of the simulation should be realistic in some sense.

In a bigram model, as used by Eckert et al. (1997), the state of the simulation is
determined uniquely by the dialogue act1 of the system’s latest utterance. Such
bigram statistics can be learned completely from data. However, as pointed out by
Schatzmann et al. (2005) this approach often leads to nonsensical dialogues. A
number of researchers have therefore sought to improve on this basic model by
enriching the state representation (see e.g. Levin et al 2000, Götze et al. 2010).
Another problem with the bigram approach is data sparsity; not all realistic
dialogue behaviours will be present in the original data set. T

Another use for simulated users in dialogue systems is as a tool for testing during
dialog system development was suggested by Ai and Weng (2008). Replacing real
users in early phase testing where the system to be tested is not yet stable enough
for evaluation by real users.

2. Simulated pedestrians
The simulated user (henceforth referred to as “S”) acts as a user taking instructions
from a system giving natural-language route instructions. S can either be
connected to such a system, or be controlled by a human operator entering
natural-language instructions from the keyboard.

1 A dialogue act is an abstraction of an utterance, representing its pragmatic-semantic
function (see e.g. Traum (1999)).

3. Cognitive module
In its cognitive module, S maintains a list of long-term goals; each such goal is the
identifiers of a place to visit. These places can possibly be very far away from S’s
current position. As S moves through the city, S will continuously check if its
current position is close to one of those places; this mechanism mimics the desire
to visit certain specific sites in the city. Furthermore S keeps a list of nodes or node
types that will, once such a node is in S’s view, influence S to approach it. We call
such nodes attractors; these are used to simulate opportunistic behaviour (such as
approaching restaurants when they come into view, perhaps to check out the
menu).

Apart from long-term goals and attractors, S also maintains a stack of short-term
goals. Again, each such short-term goal is an identifier of a node to go to, but
short-term goals are close to S and are within S’s view. Short term goals are usually
put on the stack as a result of instructions from the route-giving system or human
operator. However, if S receives no instructions, it will try to guess an appropriate
next short term goal and put it on the stack on its own initiative. Most often, S will
continue walking in roughly the same direction as before, but with a small
probability S will deviate from its current course and randomly select a new
direction.

In addition, S has an internal scalar representation of how assertive it is that the
current direction is correct. This assertiveness is influenced in the positive direction
if a given instruction can be interpreted sensibly, e.g. when the instruction is “Turn
left”, and it is indeed possible to turn left at S’s next short-term goal, or if the
instruction is “Go towards Starbucks”, and the reference “Starbucks” can be mapped
to a node in S’s view. If it is not possible to turn left, or if there is no Starbucks in
view, assertiveness will be decreased. S’s assertiveness is also slowly decreased as
time elapses without it having received a route instruction, and even more so if S
needs to change direction on its own initiative.

S uses a natural-language parser to translate instructions into a formal meaning
representation language (MRL). The reference resolution step, which interprets
context-dependent references like “left”, “the museum” or “Starbucks”, operates on
the MRL by replacing lambda-bound variables for identifiers of actual nodes. This
reference resolution process is described further in Deliverable 2.3.2, section 4
(Albore et al. 2013).

S employs a probabilistic finite-state automaton to control its dialogue behaviour.
Dialogue acts that can be expressed are requests for directions (“Directions to
Camera Obscura”), requests for instructions (“Where should I go now?”), answers to
specific questions (e.g. “Can you see Starbucks?”), acknowledgements (“Okay”),
reports of miscommunication (e.g. “I didn’t understand that”, “I don’t know where
Starbucks is.”), reports of success (“Thanks, I can see Camera Obscura”), and a few
others. In particular, S will request an instruction when its assertiveness falls below
a given threshold.

Finally, S maintains a representation of the set of currently visible objects. This is
repeatedly retrieved from the spatial module (see next section).

4. Spatial module
In order for the S to produce believable behaviour it needs to be able to perceive
and react to the surrounding environment. The Spatial Module creates a model of
this environment by parsing an OpenStreetMap XML file. Such XML files can be
generated on the fly by indicating a region on the map in the OpenStreetMap web
interface (http://openstreetmap.org), and consist of lists of nodes defining a single
lat-lon point, ways encoding roads, areas, buildings, etc., and relations between
ways. Because of this set-up, the Spatial Module is portable between different cities
without any re-configuration whatsoever.

From the OpenStreetMap XML file, the Spatial Module builds an object-oriented
representation which forms the basis for all ensuing calculations. In particular,
buildings and areas are represented by polygonal objects. If the height of a specific
building is known, this height will be imported into the object model; otherwise the
building is set to a general height value that can be specified per city or area.

5. Communication between Cognitive and Spatial modules
To produce realistic behaviour, a simulated user should not be omniscient
concerning the location of all buildings, streets and landmarks in the ,city.
Therefore, the full object-oriented model of the city maintained by the Spatial
Module is not directly available to the Cognitive Module. Rather the Cognitive
Module can query the Spatial Module for visibility information: The query consists
of two (lat,long)-positions A and B, and the response consists of a “yes”- or “no”-
answer. In the case of a “yes”-answer, some extra information, some extra
information is provided as well (see section 3.5).

As mentioned above, the Cognitive Module decides the next short-term goal G, i.e.
the next node to go to. However, the Cognitive Module does not concern itself with
the exact route to G; rather it sends a “Next-node” message to the Spatial Module,
which then computes a detailed walk-path to G (see section 3.6). The Spatial
Module then generates the actual movement as a stream of simulated GPS
coordinates which is sent to the route-giving system that instructs the simulated
user. Also the Cognitive Module listens to this coordinate stream in order to know
when G has been reached, and its time to decide on the next short-term goal.

The Cognitive Module can also send other commands to the Spatial Module to
control the behaviour of the simulated user (“stop”, “start”, and “reset”, “increase/
decrease speed”).

http://openstreetmap.org
http://openstreetmap.org

6. GUI
The simulated user can be monitored from a graphical user interface. The current
position is indicated by a pulsating double ring. Previous positions are shown
tracing a path of the short term navigational goals passed by the simulated user.
The speed of S can be changed, either manually using the “+” and “-” keys on the
keyboard or by a command from the cognitive module to the spatial module.

Figure 1: Communication between modules of the simulated users and surrounding systems.

Figure 2: A graphical 2D representation of the Spatial Module’s object model.

The simulated user position is updated once every second, the same frequency as
the Spacebook phone app would send GPS updates when used by a human. Line of
sight queries are shown as red lines while they are calculated.

Only buildings are rendered as a default. However, the rendering of all objects in
the spatial module such as roads, areas, amenities, etc can be turned on and of at
any time using the drop down list at the bottom right side of the interface.

It’s also possible for a human operator to use the GUI to control the movement of
the simulated user.By double-clicking somewhere on the map, a new navigational
goal for the simulated user is created.

A 3D mode can be toggled in which the camera follows the position and rotation of
S, showing a 3D rendered version of the environment from the perspective of S.

Figure 3: A 3D view of a part of the object model from the simulated users perspective.

Figure 4. The GUI in edit mode.

In edit mode it is possible to create any number of triggers by clicking anywhere on
the map and attaching an id to the trigger. When S enters a trigger area , an event is
sent over ICE to the modules listening for the specified trigger event. This is a very
useful feature during development and testing.

There is also a GUI for controlling the simulated user with written natural-language
route instructions (see figure 5). The instructions (in this case, "turn left") are
entered by the human operator in the top-most textbox. After the instruction is
entered, the textbox below shows a paraphrase of the utterance after contextual
interpretation (in this case "turn left at 21545086", where 21545086 is the identifier
of a node in the geographical model of the city). The utterances of the simulated
user are shown in the "Reply" textbox (in this case "where should I go now"). Below
the current coordinates and the stacked-up short-term goals are displayed.

Figure 5. The dialog GUI

7. Visibility calculations
A visibility calculation is triggered by a query from the Cognitive Module, consisting
of two lat-long points A and B. The answer returned from the Spatial Module
contains the required visibility information (true or false). In the case of “true”, the
Spatial Module also returns a list of all geographical objects intersected by the line-
of-sight between A and B. The answer could for example contain information that
there is a road or a park between A and B.

Modeling a city area involves modeling a large number of polygons, and therefore
we employ spatial partitioning using a so-called quadtree (using an implementation
technique suggested by Prichard, 2001) to increase efficiency.

The top node of the quadtree represents the whole area. The area is then divided in
four equally sized quadrants, each of which is represented by a child node. The
buildings that are completely contained in a quadrant are associated with the
corresponding child node, whereas buildings whose perimeter crosses the border
between two or more quadrants are associated with the root node. Each of the four
quadrants is then divided into sub-quadrants, and the same process continues
recursively a fixed number of steps, or until a sub-quadrant contains no buildings
at all (see Figure 6). During runtime, the quadtree allows for quickly finding the
closest building of any point in the area.

Figure 6. Left: Recursive spatial partitioning of an area in the city in smaller and smaller
quadrants. Right: The corresponding quadtree.

An important step in speeding up calculations involving a large number of buildings
is to compute a bounding rectangle around each building. The most straightforward
choice is the rectangle formed by the lower left point and the upper right point of
the building. However, if the building is slanted with the respect to the coordinate
system, the bounding rectangle will be unnecessarily large (see Figure 7).

The better approach is to instead make a change of the basis to a coordinate
system whose axes are parallel to the perimeters of the building. If this is not
possible (e.g. because the building is not rectangular), the bounding rectangle can
be made as small as possible using principal component analysis (see e.g. Eberly
(2001), section 2.5.2 and Lengyel (2012), section 8.1).

Figure 7. Left: Minimal bounding rectangle aligned with the original coordinate system.
Right: Minimal bounding rectangle after a change of bases.

For each line-of-sight query, first a check is performed to see if there are any
bounding boxes between the two points A and B. This step allows us to quickly
exclude the majority of buildings from further computation. For each bounding box
intersected by the line AB, a second more expensive check is performed to see
whether AB intersects with the object’s polygon. If this second check shows that no
building is intersected by AB, then there is clearly a free line of sight from A to B.

Now consider the case where the line AB intersects a polygon which represents a
building. It is perfectly possible that B is situated within that very building, but is
still visible. This could be the case, for instance, if B represents a shop or a
restaurant, which is located within a building but is still visible from the street
outside. The heuristic solution adopted is that, for certain types of nodes like
restaurants, cafes, pubs, shops, etc., the location of B is projected outside of the
building polygon (see Figure 8).

If the point B represents a whole building (e.g. a church), B is usually centrally
placed within the polygon, and there is no obvious projection direction. In those
cases, B is considered visible from A if the line AB intersects only the building
polygon surrounding B. tIf AB intersects a polygon representing a building, and B is
not within that polygon, B is not visible from A.

If AB intersects only polygons which are not buildings, B is considered to be visible
from A, and the intersecting polygons are returned as a reply to the visibility query
along with a “yes” answer.

If there are no buildings between the points A and B point B is returned as visible.

The visibility calculations are performed on the graphical processing unit (GPU), but
can also be done on the CPU.

8. Walk-path calculations
To perform walk-path calculations, an array with the resolution of 1*1 meters is
superimposed on top of the city map. Walk-path calculations are made with a
combination of the A*search algorithm, where each square in the array corresponds
to an atomic step, and an influence map representing past behaviours of real users.

Influence maps is a common technique in game programming AI, widely used in
real-time strategy games, simulations, first person shooters and similar
applications. What these applications have in common are dynamic and highly
detailed environments with a large number of active game objects, and the need to
produce believable but not overly predictable results fast. Influence maps allow a
practical way of letting past events affect the probability of future events in the
same location.

In this domain, the influence map is also represented as a 1*1 meter array. Every
square of this array is given an initial value of 0.

The influence map is modified by processing logs of walk-paths of real pedestrians
as measured by GPS/Glonass that are read into the city model.

if a square in the grid has been trod by a user it’s corresponding value in the array
is incremented. After a large number of walk-paths have been processed, popular
spots will have high values and less popular spots will have lower values. With the
exception of GPS errors, inaccessible spots will have the value zero.

There are several ways to create the influence map from user walk paths.

Figure 8: (Left) B is visible even though AB intersects a bounding box. (Middle) B is visible even
though it is within a polygon. (Right) B is not visible.

The most straightforward way is to just modify the values of the those array cells
where the user has walked. This is illustrated in figure 9a (numerical
representation) and figure 9b (graphical illustration). An alternative way is to let
also the surrounding squares be influenced in a gradient fashion, This is illustrated
in figure 9c (numerical representation) and figure 9d (graphical illustration).

Every position along the path of a user is given a positive influence value that can
be adjusted by factors such as accuracy values from the GPS and the smoothness of
the path. A higher positive value on a square asserts a higher influence on the
behaviour of the simulated user.

When constructing a walk-path for the simulated user, the influence map is first
added to the 2D grid representing the surrounding area, and the previous user
paths are used to lower the cost of each node according to the value in each
square . The path is then created using an A* algorithm as described by Russell and
Norvig (2003).

Buildings normally have a high enough cost to make A* exclude them from paths.
However, if several real users walk through (what seems to be) a building, the cost
of walking through the building is lowered to the point to where A* can include it in
a walk-path, allowing a simulated user to also walk through. This is very useful
since there might be passages which are not evident from the map representation,
for instance, what seems to be a building might be an archway.

Whether or not to allow the simulated user behaviours to override map constraints
can be set by tweaking the cost of crossing buildings which can be made dependent
of the quality of the geographic data available. The simulated user will follow the
paths set by real users when available. This also means that if real users avoid an
obstacle that is not in the city model, so will the simulated user.

Figure 9. Numerical and graphical representation of influence maps.

9. Final remarks

Future work includes expanding on the capabilities of the simulated users, and
using these users for bug detection and fine tuning in the Spacebook route giving
system.

Figure 10. (Top) The planned path from A to B goes around the building. (Bottom) Influence maps
built from walk-paths of real users reveal that there is a passage through the building. The path
planner uses this information to find a shorter path.

10. References
Albore, A. et al. (2013) Final pedestrian behaviour component. Spacebook deliverable
D2.3.2.

Eberly, D. (2001) 3D game engine design – a practical approach to real-time computer
graphics. Morgan Kaufmann.

Eckert, W., Levin, E. and Pieraccini, R. (1997) User modeling for spoken dialogue system
evaluation. Proc. ASRU’97, pp 80–87.

Götze, J., Scheffler, T., Roller, R. and Reithinger, N. (2010) User simulation for the evaluation
of bus information systems. In Spoken Language Technology Workshop (SLT), 2010 IEEE,
pages 454–459, IEEE.

H Ai, F Weng - Proceedings of the 9th SIGdial '08 Proceedings of the 9th SIGdial Workshop
on Discourse and Dialogue pp 164-171.

Lengyel, E.(2012) Mathematics for 3D game programming and computer graphics, 3rd
edition. Course Technologies.

Pritchard, M. (2001) Direct access quadtree lookup. In Game programming gems 2, Charles
River Media publishers, pp. 394–401.

Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach, 2nd
edition, Prentice Hall.

Schatzmann, J., Georgila, K. and Young, S. (2005) Quantitative evaluation of user simulation
techniques for spoken dialogue systems. Proc. SIGDial.

Traum, D. (1999) Speech act for dialogue agents. In Foundations of rational agency,
Wooldridge and Rao (Eds), pp. 169–201.

http://en.wikipedia.org/wiki/Stuart_J._Russell
http://en.wikipedia.org/wiki/Stuart_J._Russell
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

