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Executive summary

This document describes the development of the machine-learned semantic parser, using the manually
annotated corpus described in Deliverable 4.1.2 as training data. Semantic parsing is the task of trans-
lating natural language (NL) utterances into a machine-interpretable meaning representation (MR). Most
approaches to this task have been developed and evaluated on a small number of existing corpora. While
these corpora have made progress in semantic parsing possible, most of them cover rather narrow domains
and context is rarely considered. Hence the SPACEBOOK project has provided an excellent opportunity to
extend existing work by considering the more challenging domain—namely tourism related activities in
Edinburgh—that SPACEBOOK offers.

One of the difficulties in treating the creation of a semantic parser as a machine learning problem is that the
task of predicting a meaning representation for an utterance—particularly when the MR is as complex as
that used in SPACEBOOK—is a highly complex operation. Hence traditional machine learning approaches
relying on argmax operations, for example the commonly used structured perceptron, cannot be applied.
Instead, we chose to adapt the imitation learning algorithm DAGGER to learn a joint semantic parsing
model. Our results, which are based on an intrinsic evaluation using a held-out portion of the corpus as a
test set, suggest that the task defined by the new SPACEBOOK corpus is feasible, albeit more challenging
than the semantic parsing tasks defined by existing corpora. The results also demonstrate the potential of
applying imitation learning to complex structured prediction tasks.

The report concludes with a description of the difficulties experienced in building the semantic parser in
time for integration into the full SPACEBOOK system, and some suggestions for future work.
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1 Introduction

This report follows on from Deliverable 4.1.1 (Initial Request Analysis Component) in which the semantic
parsing problem was formulated and an initial rule-based semantic parser was described, and Deliverable
4.1.2 (Final Request Analysis Component), which described the creation of the semantic parsing corpus
and an initial attempt at building a machine-learned dialog act tagger (the first component in the semantic
parser). Some of the introductory material from the earlier deliverables is repeated here, to make this
report more self-contained.

The goal of this part of the project was to automatically learn a semantic grammar and parser from training
data, where the data consists of pairs of SPACEBOOK-type utterances and their corresponding logical
forms. The SPACEBOOK-type utterances are transcriptions of real speech captured during Wizard-of-Oz
experiments, with the intention that these will be close to the output of the speech recognizer used in
the SPACEBOOK-system. The logical forms are represented using the Meaning Representation Language
(MRL) developed for SPACEBOOK, which was described in detail in Deliverable 4.1.1.

The semantic parsing corpus is a substantial contribution in its own right, based on two dialog scenarios
and consisting of 17 dialogs and 2,374 user utterances, each utterance manually annotated with its se-
mantic representation using the SPACEBOOK MRL. Compared to supervised syntactic parsing problems,
e.g. the Penn Treebank parsing task for which there is roughly 40,000 annotated newspaper sentences [1],
2,374 utterances is relatively small. But compared to existing semantic parsing corpora, e.g. the ATIS [2]
and GeoQuery [3] corpora, our new corpus is at least as large. However, given the increased complexity of
the SPACEBOOK semantic parsing problem compared to earlier semantic parsing tasks, we still expected
the machine learning task to be a challenging one. The earlier results on the dialog act tagging task, re-
ported in Deliverable 4.1.2, suggested that the task is indeed difficult but not infeasible. Our new results
reported here confirm this initial judgement.

In the remainder of this report, Section 2 repeats some of the description of the MRL from an earlier
deliverable. Section 3 describes how semantic parsing can be applied to the new corpus, and Section 4
shows how the prediction of the MRL for an utterance can be broken down into a number of individual de-
cisions. Section 5 describes imitation learning — a type of machine learning which we argue is particularly
well-suited to the prediction of complex MRLs. Section 6 presents some experimental results based on an
intrinsic evaluation using held-out sections of the corpus as test data. Finally, the concluding sections have
some general discussion about the task and the difficulties experienced in the context of the SPACEBOOK
project.

2 Meaning Representation Language

The MRL uses a flat syntax composed of elementary predications, based loosely on minimal recursion
semantics [4], but without an explicit treatment of scope. Each meaning representation (MR) consists of a
dialog act representing the overall function of the utterance, followed for some dialog acts by an unordered
set of predicates. All predicates are implicitly conjoined and the names of their arguments specified to
improve readability and to allow for some of the arguments to be optional. The argument values can be
either constants from the controlled vocabulary, verbatim string extracts from the utterance (enclosed in
quotes) or variables (xno). Negation is denoted by a tilde (~) in front of predicates. The variables are used
to bind together the arguments of different predicates within an utterance, as well as to denote coreference
across utterances. Figure 1 contains part of an example dialog annotated with the MRL.
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USER what’s the nearest italian, em, for a meal?

r

dialogAct (set_question)

*isA(id:X1, type:restaurant)

def (1id:X1)

hasProperty (id:X1, property:cuisine,
value:"italian")

distance (location:@USER,

location:X1, value:X2)
argmin (argument:X1, value:X2)

WIZARD vapiano’s.

r

dialogAct (inform)

isA(id:X4, type:restaurant)
*isNamed (id:X4, name:"vapiano’s")
equivalent (id:X1, id:X4)

\.

USER take me to vapiano!

dialogAct (set_question)

*route (from_location:@USER,
to_location:X4)

isA(id:X4, type:restaurant)

isNamed (id:X4, name:"vapiano")

~

WIZARD keep walking straight down clerk street.

dialogAct (instruct)

*walk (agent :QUSER, along_location:X1,
direction:forward)

isA(id:X1, type:street)

isNamed (id:X1, name:"clerk street")

'

J\.

USER what is this church?

dialogAct (set_question)
*isA(id:X2, type:church)
index (id:X2)

WIZARD sorry, can you say this again?

r

dialogAct (repeat)

\.

~

USER i said what is this church on my left!

r

dialogAct (set_question)
*isA(id:X2, type:church)
index (id:X2)
position(id:X2, ref:@USER,
location:left)

\.

WIZARD it is saint john’s.

r

dialogAct (inform)

isA(id:X3, type:church)

*isNamed (id:X3, name:"saint john’s")
equivalent (id:X2, 1id:X3)

USER A sign here says it is saint mark’s.

dialogAct (inform)

isA(id:X4, type:church)

*isNamed (id:X4, name:"saint mark’s")
equivalent (id:X2, id:X4)

Figure 1: Sample annotated dialog
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Annotation with the MRL is not text bound; i.e. we do not specify the alignment between tokens in the
utterance and elements in the MR, apart from the verbatim string extracts. Even though some supervision
can be helpful for automatically inferring such alignments [5], the annotation task is non-trivial, and often
it is not possible to decide on a single correct alignment. For example, in the first utterance in Figure 1
the isA predicate denoting the restaurant cannot be aligned with a particular token or span in the utterance
since neither “italian” nor “meal” on their own can represent it. Furthermore, including the tokens between
“italian” and “meal” would not be ideal either since many of them are not relevant to this predicate.

2.1 Predicates

The MRL contains predicates with a variety of arguments to introduce entities, properties of entities, and
their relations:

e Predicates introducing entities and their properties: isA, isNamed and hasProperty.

e Predicates describing user actions, such as walk and turn, with arguments such as direction and
along_location to express the various modes of action.

e Predicates describing geographic relations, such as distance, route and position. The latter
uses the argument ref in order to denote relative positioning.

e Predicates denoting whether an entity is introduced using a definite article (def), an indefinite
(indef) or an indexical (index), which are useful in determining which real-world entity is being
referred to.

e Predicates expressing numerical relations such as argmin and argmax.

3 Semantic parsing for the new corpus

The annotation format shown in Figure 1 is readable and easy to use, which allowed us to develop the
annotation scheme and achieve high inter-annotator agreement (Deliverable 4.1.2). However, it is not
straightforward to use in a structured prediction framework, nor in experiments, as it is difficult to compare
different MRL expressions in this format beyond exact match. The problem with exact match is that it does
not allow partial credit to be given to MRL expressions missing only a few predicates, and it considers all
incorrect MRLs to be equally bad.

For these reasons, we converted the annotation scheme based on predicates into a form consisting of
conceptNodes and arguments. Under this conversion, all predicates introducing entities (1sA) and most
predicates introducing relations among entities (e.g. distance) become conceptNodes, while all other
predicates (e.g. isNamed, def, hasProperty) are converted into arguments of conceptNodes. For exam-
ple, the MRL expression for the first utterance in Figure 1 is converted into the form shown in Figure 2g.
This conversion resulted in 16 utterance-level labels (15 dialog acts plus an additional one for the non-
interpretable utterances), 35 conceptNode types and 32 argument types. In case an entity is annotated in an
utterance without explicit mention of its type (e.g. X2 in the last utterance of Figure 1), we denote it with
a conceptNode with the special type empty. Each conceptNode has an identifier attached to it (e.g. X1)
and each argument can take as value a constant (e.g. det), a conceptNode identifier (e.g. location) or a
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verbatim string extract from the utterance (e.g. cuisine). Any argument not present for a conceptNode
in the utterance (e.g. the name of restaurant) is implicitly set to null.

The comparison between a predicted conceptNode form and a gold standard one is needed for two reasons:
for evaluation at test time, and during training. We perform the comparison in three stages. First we
identify a mapping of the conceptNode identifiers to the ones of the gold standard. While the identifiers
do not carry any semantics, they are necessary so that we can differentiate between multiple conceptNodes
of the same type, e.g. if a second restaurant had been predicted in Figure 2h then it would need to have
a different identifier and so it wouldn’t be matched with any conceptNode in the gold standard. Second,
we decompose the conceptNode forms for both into a set of predictions, as shown in Figure 2h. This
decomposition allows us to reward a system for predicting parts of the MRL correctly, e.g. for predicting
a restaurant in Figure 2h even if some of its arguments are incorrect. However, to receive credit for an
argument, the conceptNode to which it belongs must be correct too. Using these predictions we count the
true positives, false positives and false negatives, and calculate precision, recall and F-score. For a given
pair of conceptNode forms, many mappings are possible. We choose one mapping by calculating all
mappings allowed by the types of the conceptNodes (only mappings between identifiers of conceptNodes
of the same type are allowed), and then selecting the one resulting in the lowest sum of false positives and
false negatives.

4 Task decomposition

Given an utterance, the semantic parsing task as now defined is to predict the correct conceptNode form
for it. We decompose this task in stages, as depicted in Figure 2 and described below.

Dialog act tagging In dialog act prediction, the task is to assign an utterance level label. For this pur-
pose we build a classifier using features based on the textual content of the utterance and on the utterance
preceding it. The former contain all unigrams, bigrams and trigrams and final punctuation mark (if any).
Unlike in typical text classification tasks, content words are not always helpful in dialog act tagging; e.g.
the word “church” in the user utterances in Figure 1 is not indicative of set_question, while n-grams of
words typically considered as stopwords, such as “what is this”, can be more helpful. The punctuation
feature is used as a proxy to the prosodical information commonly used in dialog act tagging for spo-
ken language [6]. The features based on the preceding utterance contain whether it was by the user or
the wizard and in the latter case its dialog act. Such features are useful in determining the act of short,
ambiguous utterances such as “yes” which is tagged as yes, when following a prop_question utterance
by the wizard but as acknowledge otherwise. If the dialog act predicted is to be accompanied by other
predicates then we proceed to the remaining stages, otherwise the prediction is terminated.

ConceptNode prediction In conceptNode prediction the task is to predict whether each of the tokens
in the utterance denotes a conceptNode of a particular type, or null, in a left-to-right fashion, thus forming
a 36-class tagging task. For example, in Figure 2g the conceptNode distance is predicted from the
token “nearest” and the conceptNode restaurant from the token “meal”, while all other tokens predict
null (see Figure 2b). The features used include the target token and its lemma, which are conjoined with
the part-of-speech tag, the previous and following tokens, as well as the the lemmas of the tokens with
which it has syntactic dependencies. Further features represent the dialog act predicted (e.g. route is
more likely be present in an utterance tagged as set_question), the types of the conceptNodes already
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SET_QUESTION SET_QUESTION

distance restaurant

N
1 N

’ 2

what ’s the nearest italian for a meal ? what ’s the nearest italian for a meal ?

(a) Dialog_Act prediction (b) ConceptNode prediction

number number
SET_QUESTION

SET_QUESTION . .
location /—\ N location /—\ L
TN singular TN singular

@USER restaurant @USER restaurant

distance det distance = | det
: . N +cuisine . N
! ' def ! N def
what ’s the nearest italian for a meal ? what ’s the nearest italian for a meal ?
ouT ourour our IN OUTOoUT oUT
(c) Constant argument prediction (d) String argument prediction
SET_QUESTION SET_QUESTION focus
. argmin number , number
location Tocation location Tocation
i
v O\ gy /SI;ular v~ O\ gy /s;c;ular
@USER  distance restaurant et @USER  distance restaurant et
1 s \ e 1 T \ e
i cuisine . N i cuisine . N
! ' def ! N def
what ’s the nearest italian for a meal ? what ’s the nearest italian for a meal ?
(e) Node argument prediction (f) Focus/Negation prediction
[ dialogAct:SET_QUESTION )
Xl:restaurant
X1:restaurant(num:singular)
Xl1:restaurant(det:def)
SET_QUESTION(focus:X1) Xl:restaurant(cuisine:“italian™)
X1:restaurant(num:singular, det:def, X2:distance
cuisine:“italian”) X2:distance(location:@USER)
X2:distance(location:@USER, location:X1, X2:distance(location:X1-restaurant
argmin:X1) (num:singular, det:def))
X2:distance(argmin:X1)
focus:X1-restaurant(num:singular)
(g) ConceptNode form (h) Evaluation form

Figure 2: The stages followed by the semantic parser during prediction.

predicted in the utterance, as well as the total number of conceptNodes predicted so far. To repeat an
important comment made earlier, note that the alignments between conceptNodes and tokens are not part
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of the manual annotation, and so from a machine learning perspective are considered hidden. Given that
the evaluation does not consider the alignment between conceptNodes and tokens, it would have been
equally correct to have predicted the same conceptNodes from any other token; e.g. restaurant could
have been predicted from “italian”. Nevertheless, the choice of alignment is likely to affect the argument
prediction stages that follow, since it determines feature extraction for these stages. Hence it is important
that the semantic parser learns to align well.

Constant argument prediction Each of the conceptNodes predicted in the previous stage has argu-
ments that need to be filled in. In Figure 2c, conceptNodes denoting entities such as restaurant have
the arguments name, number, det, cuisine, etc., while distance has two location arguments and one
argmin. In this stage we decide, for each predicate’s argument, whether its value should be one of the
constants defined (e.g. the values QUSER, singular and def for argument types location, number and
det), or the constant STRING to indicate that the value should be a verbatim extract from the utterance (e.g.
argument cuisine) or NODE to indicate that the value should be a node (e.g. the arguments location and
argmin). If an argument is not present (e.g. name for the restaurant), it is set to the special constant
NULL. Thus this stage is a multiclass classification task in which the correct constant must be predicted
for each argument. Since each argument type has its own set of constants, we use a different classifier
for each of them, resulting in 32 classifiers for this stage that are applied according to the conceptNodes
predicted.

The features used for each classifier consist of the conceptNode type (different entities are likely to have
different arguments filled in, e.g. size is more likely to be filled in for church rather than a restaurant),
the token as well as its lemma and part-of-speech tag that predicted the conceptNode (e.g. the number
argument can be easily predicted from these), and the syntactic dependency paths from the token that
predicted the conceptNode (e.g. “nearest” for distance) to all other tokens in the utterance. Furthermore,
we include as features the values already predicted for the other arguments (e.g. the name argument is
more likely to be null if the number is predicted to be plural), the dialog act and the other conceptNode
types predicted in the utterance.

String argument prediction For each argument with STRING predicted as its value (e.g. cuisine
in Figure 2d), we predict for each token in left-to-right order whether it should be part of the verbatim
string extract for this argument or not (/N or OUT). Since the string extracts that are appropriate for each
argument differ (e.g. the values for cuisine are unlikely to be the same as those for name), we use
separate binary classifiers for each of them. The features used include the target token and its lemma,
which are conjoined with the part-of-speech tag, the previous and following tokens, as well as the lemmas
of the tokens with which it has syntactic dependencies. Further features include the label assigned to the
previous token and the syntactic dependency path from the token that predicted the conceptNode to the
target token.

Node argument prediction For each argument with NODE predicted as its value, we predict for each
conceptNode whether it should be the value for it, e.g. in Figure 2e the restaurant conceptNode is the
value for both location and argmin arguments of distance. As with the string argument prediction,
we use separate binary classifiers for each argument. The features extracted include the token and the
lemma and part-of-speech tag of the token that predicted the argument conceptNode (e.g. “meal” for
restaurant), as well as the syntactic dependency path between the token that predicted the argument
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conceptNode and the token that predicted the conceptNode of the feature in question.

Focus/Negation prediction We treat the prediction of which conceptNode(s) should be focused or
negated as two separate binary classification tasks. The features used for this include the token that
predicted the conceptNode in question, its lemma and PoS tags and the syntactic dependency paths to all
other tokens in the utterance. Further features include the type of the conceptNode in question and the
features predicted for it.

5 Imitation learning for structured prediction

In order to learn the classifiers for the task decomposition described above we need to address two chal-
lenges. The first challenge is the complexity of the structure to be predicted. The task involves many inter-
dependent predictions from a variety of classifiers; thus it doesn’t lend itself to modelling approaches that
rely on predicting a particular type of graph. In addition, incorporating features that capture these depen-
dencies is likely to result in increased predictive accuracy. The second challenge is the lack of alignment
information during training. As discussed earlier, aligning predicates with tokens from the utterances is
a non-trivial annotation task, and it is ignored by the evaluation since it is not part of the MR expression.
Due to the lack of this information we are unable to train a pipeline of independent classifiers; for example
in order to train a classifier for conceptNode prediction, we would need to know which token is aligned
with restaurant in Figure 2g. Furthermore, many of the features extracted for all stages beyond the
dialog act tagging depend on the alignment between the tokens and the predicted conceptNodes, i.e. rely
on predictions made earlier that break the commonly assumed first- or second-order Markov assumption.

Imitation learning algorithms aim at learning controllers from demonstrations by human experts [7, 8].
Unlike standard reinforcement learning algorithms [9], they do not require the specification of a reward
function by the user. Instead, the algorithm observes a human expert performing a sequence of actions
to predict task instances and learns a policy that “imitates” the expert with the purpose of generalizing
to unseen data. Imitation learning algorithms such as SEARN [10] and DAGGER [11] have been applied
successfully to a variety of structured prediction tasks such as summarization, biomedical event extraction
and dynamic feature selection [10, 12] thanks to their flexibility in incorporating features based on struc-
ture. In this work we focus on DAGGER and extend it to handle the missing alignments in the training
data.

5.1 DAgger

The dataset aggregation (DAGGER) algorithm [11] forms the prediction of an instance s as a sequence of
T actions y;.7 predicted by a learned policy which consists of one or more classifiers. During training,
DAGGER converts the problem of learning how to predict these sequences of actions into cost sensitive
classification (CSC) learning. In CSC each training example has a vector of misclassification costs associ-
ated with it, thus rendering some mistakes on some examples to be more expensive than others [13]. The
dependencies between the actions are learnt by appropriate generation of CSC examples. In particular,
the features for each action y; can take into account all previous actions y;.,_, while the costs for each
possible action ¢; take into account the effect of y; on the remaining sequence of actions. The costs for
each possible action y; are estimated by assuming that the action y/ was taken, then the following actions
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Algorithm 1: Imitation learning with DAGGER
Input: training instances S, expert policy 7*,
loss function /, learning rate 3, CSC learner CSCL
Output: Learned policy Hy

1 CSC Examples E =0

2 fori=1toN do

3| p=01-p)"!

4 current policy ©T = pn* + (1 — p)H;_;

5 for sin S do

6 Predict ©t(s) = $1.7

7 for §; in (s) do

8 Extract features @, = f(s,¥1.4-1)

9 foreach possible action ytj do
10 Predict y/yy 1.7 = (53 $1:1-1,37)
11 Assess ¢! = E(yAl:,,l,yf,y/tH:T)
12 Add (®;,¢;) to E
13 Learn H; = CSCL(E)

for that instance y; 1.7 are predicted using the learned policy H;, and finally the whole sequence of actions
is compared against the correct output for that instance.

Algorithm 1 presents the training procedure of DAGGER in more detail. DAGGER requires a set of
labeled training instances § and a loss function ¢ that compares complete action sequences for instances
in § against the correct output for them. In addition, an expert policy T must be specified which is an
oracle that returns the optimal action J; for the instances in the training data, which is akin to an expert
demonstrating the task. ©* is typically derived from the labels of the training instances; for example in
part of speech tagging m* would return the correct tag for each token. In addition, the learning rate 3 and
a CSC learner (CSCL) must be provided. The algorithm outputs a learned policy Hy that, unlike the expert
policy T*, can generalize to unseen data.

Each training iteration begins by setting the probability p (line 3) of using t* in the current policy 7. In the
first iteration only 7 is used but in later iterations T becomes stochastic as for each action we use * with
probability p and the learned policy from the previous iteration /;_; with probability 1 — p (line 4). Then
T is used to predict each training instance s (line 6). For each action y;, a CSC example is generated (lines
7-12). The features ®; are extracted from s and the previous actions y1,,—1 (line 8) and are expected to be
useful in predicting the current action J,. The cost for each possible action y;/ is estimated by predicting
the remaining actions y/, ;1.7 needed for s using 7 (line 10) and calculating the loss incurred given y/ w.r.t.
the correct output for s using £ (line 11). As 7 is stochastic, it is common to use multiple samples to assess
the cost of each action by repeating these steps. The features together with the costs for each possible
action form a CSC example (®;,¢;) (line 12). At the end of each iteration the CSC examples obtained
from all iterations are used by the CSC learning algorithm to learn the classifiers for a new H; (line 13).

When predicting the training instances (line 6) and when estimating the costs for each action (lines 10-11),
the policy learned in the previous iteration H;_ is used since it is part of the current policy 7, thus the CSC
examples used to learn H; in the current iteration depend on the predictions of H;_. The degree to which
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it is used depends on the probability p set at the beginning of each iteration. By gradually decreasing the
use of the expert policy in the current policy, the learned policy is adjusted to its own predictions, thus
learning how to predict sequences of actions jointly. The learning rate B determines how fast T moves
away from 1*.

5.2 Handling missing labels

As mentioned in the previous section, when generating a CSC training example in DAGGER (lines 7-12),
we do not need to know whether an action y/ is correct or not, we only evaluate what the effect of y/ is
on the loss incurred by the complete action sequence. In other words, the loss function does not need
to decompose over the actions in the sequence in order to evaluate them independently. The classifiers
forming H; are trained to predict actions that minimize the loss on the instance, independently of what the
correct action might have been.

Non-decomposable loss functions can be very useful when the training data has missing labels, as is the
case in our semantic parsing task. For the semantic parsing task, the loss function is the sum of the false
positive and false negative predictions used in calculating the precision and recall defined in Section 3.
This evaluation ignores the alignment between tokens and conceptNodes, since this information is not
part of the annotation, and only considers whether the correct conceptNodes were generated. Thus it
does not decompose over the actions used to predict the output for an utterance. While this prohibits us
from training a classifier for the conceptNode prediction stage in a straightforward manner, as we do not
have direct supervision, we can still train one using DAGGER . As explained in the previous section, the
classifier for this stage will be learnt so that it predicts in a way that minimizes the loss according to the
evaluation used. For example, while it could infer that the conceptNode restaurant is predicted by the
token “what”, it is more likely to infer that it is predicted by the token “italian” since the latter would
facilitate the correct prediction of other parts of the output, e.g. that the conceptNode predicted is one of
the location arguments of the distance conceptNode.

The only component in DAgger for which knowledge of the correct actions is assumed is the expert policy
7 for the training instances. As discussed earlier, due to the lack of alignment information in our anno-
tation the correct actions are not fully specified, i.e. at the conceptNode prediction stage we do not know
which tokens predict which conceptNodes, only the conceptNodes that need to be predicted for the utter-
ance. In order to overcome this issue, we develop a randomised expert policy in which actions that cannot
specified by the annotation are chosen randomly. For example, in Figure 2b when considering which ac-
tion to predict for token “what” (choice between null, distance, or restaurant), the expert policy picks
among them at random so that by the end of the predictions for this stage the correct conceptNodes have
been predicted. As a result, the expert policy needs to be dynamic, since the choice of conceptNode type
for a particular token depends on the ones already predicted.

The actions returned by such an expert policy are likely to be sub-optimal; however, since the expert
policy is progressively replaced by the learned hypothesis in the current policy, its effect on the training
process is decreased. For example, in the first iteration the CSC examples generated for the conceptNode
prediction stage in Figure 2b will teach the classifier that any of the tokens can predict the conceptN-
odes needed, since, in assessing the cost of each action, the actions predicted by the current policy (line
10) are all returned by the expert policy which dynamically adjusts so that it minimizes the loss w.r.t the
gold standard. In subsequent iterations, though, the actions predicted by the current policy are returned
with increasing frequency by the learned hypothesis; hence the loss incurred by sub-optimal actions (e.g.
predicting distance from token “what”) is likely to be higher than that of more reasonable ones (e.g.
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‘ basic ‘ +align
Rec ‘ Prec ‘ F Rec ‘ Prec ‘ F
dialog act 77% 80.5

conceptNodes | 68.7 | 45.7 | 54.8 | 75.5 | 51.7 | 61.4
arguments 739 | 7377 | 73.8 | 76.8 | 77.3 | 77.1

focus 87.1 | 80.7 | 83.8 | 8 | 81.2 | 83.6
overall 56.6 | 42.3 | 48.4 | 63.5 | 46.2 | 53.5
exact match 47.9% 49.1%

Table 1: Performances on the test data. Dialog act tagging and exact match measured with
accuracy.

predicting it from the token “nearest”) since the classifiers learned for the argument extraction stages are
more likely to make correct predictions. While being able to learn without alignment information between
conceptNodes and tokens in the training utterances is desirable, it would still be useful to incorporate some
easy-to-obtain supervision for this stage, e.g. that token “street” predicts the conceptNode street, or that
“walking” predicts walk. Such alignment supervision is easy to incorporate in the training process pro-
posed by augmenting the expert policy with a dictionary mapping tokens to conceptNode types. More
specifically, when the action for a token is requested by the expert policy, the latter first checks the dic-
tionary and, if the token is mapped to a conceptNode type, and if such a type is still needed to correctly
predict the MR for the utterance, then a conceptNode of that type is returned. If the token is not in the
dictionary, then the randomised method is used. Note that this alignment information is not used during
testing, and the training process is not constrained by it since the learning algorithm might eventually learn
different alignments as the expert policy is progressively ignored.

6 Experiments

For the cost-sensitive classification learning we used the adaptive regularization of weight vectors (AROW)
learning algorithm [14]. AROW is an online learning algorithm for linear predictors that takes into account
the rarity of each feature and adjusts the per-feature learning rates so that popular features do not over-
shadow rare but useful ones. Following [15], we also implemented focused costing for the three argument
prediction stages by assuming that the prediction of a particular argument does not affect the prediction of
the remaining ones. Finally, we restricted the prediction of conceptNodes to content word tokens, since
prepositions, articles, etc. are less likely to result in useful alignments.

In order to assess the performance of the semantic parser, we split the annotated dialogs into two sets, one
for training (and development) and one for testing. The former consists of four dialogs of the first scenario
and seven from the second (11 in total), while the latter consists of three dialogs from each scenario (six in
total). All development and feature engineering was conducted using cross-validation at the dialog level
on the training set. Cross-validation at the dialog level instead of the utterance level ensures that each fold
contains utterances from all parts of the scenario from which the dialog is taken. Using this setup, we set
the parameters for DAGGER to 12 training iterations, with the learning rate 3 set to 0.3.

The results reported in Table 1 were obtained by training on dialogs from the training set and evaluating on
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dialogs from the test set. The overall performance of our approach (column “basic”) in terms of predicting
the elements of the conceptNode form (Figure 2g) is 48.4 points in F-score. The exact match accuracy at
the utterance level is 47.9%. Isolating the performance at the conceptNodes and the argument prediction
stages, we observe that the main bottleneck is the former, which is 54.8 points in F-score compared to
73.8 for the latter.

In order to improve conceptNode prediction performance we augmented the expert policy with an align-
ment dictionary extracted from the training data, containing tokens that commonly predict a particular
conceptNode type, as described in the previous section. These included nouns (e.g. “cash”-atm), verbs
(“see”-1sVisible) and tokens of names (e.g. “KFC”-restaurant). In total 95 tokens were collected.
As shown in Table 1 (column “+align”) the incorporation of the alignment dictionary improved not only
conceptNode prediction performance by 6.6 points in F-score, but also argument prediction by 3.3 points,
thus demonstrating the benefits of joint learning. The overall prediction performance improved by 4.9
points in F-score, and whole exact match accuracy improved by 1.2 percentage points.

In the experimental setup considered above, all training dialogs from both scenarios were used to train the
taggers, which were then evaluated on all testing dialogs from both scenarios. While this is a reasonable
evaluation approach, it is likely to be relatively forgiving, since in practice semantic parsers are likely
to encounter scenarios unseen in their training/development data. Similar setups are commonly used in
semantic parsing evaluations on the ATIS corpus, in which dialogs concerning the same flight request
are included in training, development and testing sets. Therefore we considered a second evaluation
setup in which the dialogs used to train the taggers are from different scenario(s) than the scenario of
the dialogs used to evaluate their performance. Testing dialogs from different scenarios is likely to be
more challenging since they are likely to contain mentions to different entities, thus they provide a stricter
evaluation of the generalization performance. When testing on the dialogs from the first scenario and
training on the dialogs from the the second one the overall performance using the alignment dictionary
was 36.9 points in F-score, while in the reverse direction it was 41.7. While direct comparisons against
the performances reported in Table 1 would not be meaningful since fewer dialogs are being used for both
training and testing, we consider evaluating semantic parsers in this way provides useful insights into their
likely performance in a real-world setting.

7 Discussion

Previous work on learning semantic parsers has handled the issue of aligning tokens with predicates in a
variety of ways. [16] manually engineered a CCG lexicon for their experiments with the ATIS corpus. [17]
used a dedicated algorithm to infer a similar dictionary as part of the training process, and used alignments
obtained from the standard machine tranlsation alignment tool Giza++ in order to initialize some of the
features. Most recent work on the GeoQuery dataset uses an alignment dictionary that includes for each
geographical entity all noun phrases used to refer to it, for example “usa”, “us”, “country”-usa [18].
Applying such algorithms as part of semantic parsing learning is reminiscent of the use of alignment

approaches as part of machine translation learning in order to restrict the search space.

In contrast, our approach infers the alignments jointly with learning the semantic parser so that the align-
ments inferred facilitate the correct MR prediction. While we were able to improve performance using an
alignment dictionary, performance was not drastically worse without it.

The performance on the new corpus is lower than those commonly reported on ATIS and GeoQuery.
This is primarily due to the wider controlled vocabulary, which is indicative of its wider domain (see
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Deliverable 4.1.2). Although the new corpus has fewer utterances than ATIS, it has a wider vocabulary
of NL words and the utterances themselves are more varied since they do not consist of database queries
exclusively.

The main performance bottleneck is the sparsity of the training data. Some of the rarer predicates appear
only a few times in relatively long utterances; thus it is difficult to learn appropriate alignments for them.
Unlike machine translation between natural languages, in which we can exploit large parallel corpora, it
is unrealistic to expect large quantities of utterances to be annotated with MR expressions. An appealing
solution would be to use response-based learning, i.e. use the response from the system instead of MR
expressions as training signal [19]. However such an approach would not be straightforward to implement
in context-dependent semantic parsing since the response from the system would affect the following
utterances, thus requiring the development of user simulators, a non-trivial task [20] which is beyond the
scope of this work.

Finally, dialog context is taken into account in predicting the dialog act tag for each utterance. Even
though the dialogs are annotated with coreference links we did not attempt to perform this task as it is
difficult to evaluate and the performance on conceptNode prediction on which it relies it is relatively low.
Nevertheless, we anticipate coreference resolution in the new corpus to be more difficult than in ATIS
since the dialogs are 15 times as long as the the dialogs of that corpus.

8 Conclusions, Difficulties and Future Work

We have developed a semantic parser for the SPACEBOOK corpus under the imitation learning paradigm.
In particular, we extended the algorithm DAGGER to handle the absence of alignment information from
the training data by developing a randomized dynamic expert policy. We improved its performance by
incorporating an alignment dictionary, reaching 53.5 points in overall F-score performance.

Evaluation was intrinsic, testing how well the semantic parser is able to predict the MRLs for unseen
sentences in a held-out portion of the corpus. Our original intention was to integrate the machine-learned
semantic parser into the full SPACEBOOK system, and see how well the system performed with this
parser compared to the rule-based parser which is currently being used. However, the semantic parser
was not developed in time for such integration, only being completed with a few months of the project
remaining. The main reason that the semantic parser was not developed in time was the delay in obtaining
the Wizard-of-Oz data at the start of the project, from which we were never able to recover, especially
since creation of a manually annotated corpus is a significant, time-consuming exercise, requiring many
months of annotation time (as described in Deliverable 4.1.2).

Obvious areas for future work include investigating the use of continuous semantic vector representations
in order to ameliorate the data sparsity issues, and exploiting the coreference information in the seman-
tic parsing corpus to learn a coreference resolution system, which will make the semantic parser more
contextually aware and lead to even richer semantic output.
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