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Executive summary
This document describes progress towards the final prototype for the Natural Language Understanding
component of SPACEBOOK, which will be referred to as the Semantic Parser. A large part of the document
will describe the creation of the Semantic Parsing Corpus, which will be used to train the Semantic Parser.
The document will also describe preliminary Machine Learning experiments on the corpus, in which a
Dialog Act Tagger has been trained and tested. Dialog act tagging is the first phase in semantic parsing.
These developments have occurred by month 30 of the project. Completion of the full Semantic Parser
will take place during the remainder of the project and be reported in D4.1.3, the Report on learning
semantic analysis components.
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1 Introduction
This report follows on from Deliverable 4.1.1 — Initial Request Analysis Component — in which the
semantic parsing problem was formulated and an initial rule-based semantic parser was described. This
report focuses on the main approach to semantic parsing described in the earlier deliverable, namely to
automatically learn a semantic grammar and parser from training data, where the data consists of pairs
of SPACEBOOK-type utterances and their corresponding logical forms. The SPACEBOOK-type utterances
are transcriptions of real speech captured during Wizard-of-Oz experiments, with the intention that these
will be close to the output of the speech recognizer used in the SPACEBOOK-system. The logical forms
are represented using the Meaning Representation Language (MRL) developed for SPACEBOOK, which
was described in detail in the earlier deliverable.
We focus on the creation of the semantic parsing corpus, which will provide the training and testing
data for the development of the semantic parser. Creating such a corpus is a substantial contribution
in its own right, requiring careful guidlelines and many person-hours of annotation work. Much of the
annotation was carried out by Diane Nichols, a freelance linguist, and Andreas Vlachos (UCAM), with
further checking by Stephen Clark (UCAM).
The remainder of the report provides further description of the MRL (also detailed in D4.1.1, but included
here to make this report self-contained); and then describes some preliminary semantic parsing experi-
ments focusing on dialog act tagging, which is the first stage in the semantic parsing pipeline. In summary,
we have created a substantial semantic parsing corpus based on two dialog scenarios, consisting in total
of 17 dialogs and 2374 user utterances. We also conducted what we believe is the first inter-annotator
agreement study on semantic parsing annotation, reporting 80.4 exact match agreement between the two
annotators. The highest accuracy achieved on the dialog act tagging task was 81.0, thus suggesting that
the task is feasible but not trivial.

2 Meaning Representation Language
The MRL uses a flat syntax composed of elementary predications, based loosely on minimal recursion
semantics [1], but without an explicit treatment of scope. Each meaning representation (MR) consists of a
dialog act representing the overall function of the utterance, followed for some dialog acts by an unordered
set of predicates. All predicates are implicitly conjoined and the names of their arguments specified to
improve readability and to allow for some of the arguments to be optional. The argument values can be
either constants from the controlled vocabulary, verbatim string extracts from the utterance (enclosed in
quotes) or variables (Xno). Negation is denoted by a tilde (∼) in front of predicates. The variables are used
to bind together the arguments of different predicates within an utterance, as well as to denote coreference
across utterances. Figure 1 contains part of an example dialog annotated with the MRL.
Annotation with the MRL is not text bound; i.e. we do not specify the alignment between tokens in the
utterance and elements in the MR, apart from the verbatim string extracts. Even though some supervision
can be helpful for automatically inferring such alignments [2], the annotation task is non-trivial, and often
it is not possible to decide on a single correct alignment. For example, in the first utterance in Figure 1
the isA predicate denoting the restaurant cannot be aligned with a particular token or span in the utterance
since neither “italian” nor “meal” on their own can represent it. Furthermore, including the tokens between
“italian” and “meal” would not be ideal either since many of them are not relevant to this predicate.
Finally, even though the proposed MRL is designed to be machine-interpretable, it is not executable
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USER what’s the nearest italian, em, for a meal?
dialogAct(set_question)
*isA(id:X1, type:restaurant)
def(id:X1)
hasProperty(id:X1, property:cuisine,

value:"italian")
distance(location:@USER,

location:X1, value:X2)
argmin(argument:X1, value:X2)

WIZARD vapiano’s.
dialogAct(inform)
isA(id:X4, type:restaurant)
*isNamed(id:X4, name:"vapiano’s")
equivalent(id:X1, id:X4)

USER take me to vapiano!
dialogAct(set_question)
*route(from_location:@USER,

to_location:X4)
isA(id:X4, type:restaurant)
isNamed(id:X4, name:"vapiano")

WIZARD keep walking straight down clerk street.
dialogAct(instruct)
*walk(agent:@USER, along_location:X1,

direction:forward)
isA(id:X1, type:street)
isNamed(id:X1, name:"clerk street")

USER what is this church?
dialogAct(set_question)
*isA(id:X2, type:church)
index(id:X2)

WIZARD sorry, can you say this again?
dialogAct(repeat)

USER i said what is this church on my left!
dialogAct(set_question)
*isA(id:X2, type:church)
index(id:X2)
position(id:X2, ref:@USER,

location:left)

WIZARD it is saint john’s.
dialogAct(inform)
isA(id:X3, type:church)
*isNamed(id:X3, name:"saint john’s")
equivalent(id:X2, id:X3)

USER A sign here says it is saint mark’s.
dialogAct(inform)
isA(id:X4, type:church)
*isNamed(id:X4, name:"saint mark’s")
equivalent(id:X2, id:X4)

Figure 1: Sample annotated dialog
Version: 1.0 (Final) Distribution: Public
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directly on a database. While such a property would be desirable in some respects — for example it
would allow response-based learning — it would also restrict us to an MRL that cannot capture semantics
beyond the database. However, for SPACEBOOK such semantics are necessary since many user utterances
are not interpretable as database queries or would be difficult to represent as such, e.g. repetition requests.
We assume instead that the Interaction Manager handles the interaction with the database, and in order to
facilitate this interaction the controlled vocabulary used in the MRL corresponds closely to the schema of
the SPACEBOOK database.

2.1 Dialog acts
The dialog acts are utterance-level labels which capture the overall function of the utterance in the dia-
log, for example whether an utterance is a question seeking a list as an answer, a statement of informa-
tion, an acknowledgement, an instruction or a repetition request (set question, inform, acknowledge,
instruct and repeat). The acts defined in the MRL follow the guidelines proposed by [3] and [4].
The dialog acts in the MRL are divided into two categories. The first category contains those that are
accompanied by a set of predicates to represent the semantics of the sentence, such as set question and
inform. For these acts we denote their focal points — for example the piece of information requested in a
set question — with an asterisk (*) in front of the relevant predicate. The focal point together with the
act provide similar information to the intent annotation in ATIS [5]. The second category contains dialog
acts that are not accompanied by predicates, such as acknowledge and repeat. These are used to annotate
utterances whose function in the dialog is clear and simple, even though their actual semantics might be
rather complex and possibly beyond what the controlled vocabulary of the MRL can accommodate.

2.2 Predicates
The MRL contains predicates with a variety of arguments to introduce entities, properties of entities, and
their relations:

• Predicates introducing entities and their properties: isA, isNamed and hasProperty.

• Predicates describing user actions, such as walk and turn, with arguments such as direction and
along location to express the various modes of action.

• Predicates describing geographic relations, such as distance, route and position. The latter
uses the argument ref in order to denote relative positioning.

• Predicates denoting whether an entity is introduced using a definite article (def), an indefinite
(indef) or an indexical (index), which are useful in determining which real-world entity is being
referred to.

• Predicates expressing numerical relations such as argmin and argmax.

2.3 Coreference
In order to model coreference we adopt the notion of discourse referents (DRs) and discourse entities
(DEs) from Discourse Representation Theory (DRT) [6] based on earlier work such as [7].

Version: 1.0 (Final) Distribution: Public
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DRs are referential expressions appearing in utterances which denote DEs. DEs are mental entities in
the speaker’s model of discourse (which do not necessarily correspond to real-world entities). Note also
that multiple DEs can refer to the same real-world entity; for example, in Figure 1 “vapiano’s” refers to
a different DE from the restaurant in the previous sentence (“the nearest italian”), even though they are
likely to be the same real-world entity. We considered DEs instead of actual entities in the MRL because
they allow us to capture the semantics of interactions such as the last exchange between the wizard and
user, in which the disagreement would not have been possible to represent without using DEs. The MRL
represents multiple DEs referring to the same real-world entity through the predicate equivalent.
Coreference is achieved by using identical variables across predicate arguments within an utterance or
across utterances. The main principle in determining whether DRs corefer is that it must be possible
to infer this from the dialog context alone, without using world knowledge. For example, in Figure 1
“vapiano’s” and “vapiano” are assumed to refer to the same DE even though they are different names,
because it is clear from the dialog that the user is referring to the DE mentioned by the wizard.

3 The Corpus
The utterances for corpus annotation were collected using Wizard-of-Oz experiments with pairs of human
subjects, described in Deliverable 6.1.2. We give a short description here for completeness. In each
experiment, one human pretended to be a tourist visiting Edinburgh (by physically walking around the
city), while the other performed the role of the system responding through a suitable interface using a
text-to-speech system.
Each user-wizard pair was given one of two scenarios involving requests for directions to different points
of interest and information about them, as well as the system offering information considered of interest to
the user. The first scenario involves seeking directions to the national museum of Scotland, then wanting
to go to a nearby coffee shop, followed by a pub via a cash machine and finally looking for a park. The
second scenario involves looking for a Japanese restaurant, then asking for directions to the university
gym, requesting information about the Flodden Wall monument, visiting the Scottish parliament and
the Dynamic Earth science centre, and going to the Royal Mile and the Surgeon’s Hall museum. Each
experiment formed one dialog which was manually transcribed from recorded audio files. 17 dialogs were
collected in total, seven from the first scenario and 10 from the second.
Each scenario was designed to last approximately one hour, but the actual execution time (and number of
utterances collected) varied in each experiment depending on the amount of interaction between the user
and the wizard. The users were encouraged to ask for information according to their interests, which
resulted in a wide range of tourism-related discussions, such as foreign currency exchange rates and
architecture. Furthermore, allowing the wizards to answer in natural language instead of restricting them to
responding via database queries (as in the ATIS corpus, for example) led to more varied dialogs. Thus, the
data collected from the Wizard-of-Oz experiments allowed us to gain insights into the kinds of information
users might expect from the SPACEBOOK application and how they might ask for it.
However, this also resulted in some of the user requests not being within the scope of the system. Fur-
thermore, the proposed MRL has its own limitations; for example it does not have predicates to express
temporal relationships. Thus, it was necessary to filter the utterances collected and decide which ones to
annotate with MRs.1 In particular, we did not annotate utterances falling into one or more of the following

1A similar filtering process was used for GeoQuery (Section 7.5.1 in [8]) and ATIS (principles of interpretation
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new corpus GeoQuery ATIS
user utterances 2374 880 5871
utterances/dialog 139.7 1 8.8
unique NL words 896 280 611
MRL vocabulary 115 35 85

Table 1: Corpus comparison. Figures for GeoQuery are from [9], and for ATIS from [10] except
for average dialog length which is from [11].

categories:

• Utterances that are not human-interpretable, e.g. utterances that were interrupted too early to be
interpretable.

• Utterances that are human-interpretable but outside the scope of the system, e.g. questions about
historical events which are not included in the database of the application considered.

• Utterances that are within the scope of the system but too complex be represented by the proposed
MRL, e.g. an utterance requiring representation of time to be interpreted.

Note that when the core of an utterance can be captured adequately by the MRL, we opt to annotate it with
an appropriate MR even if some of the entities mentioned are outside the scope of the system, or if some
of the language used is too complex. For example, the final utterance in Figure 1 mentions a sign which
is outside the scope of the system, but we still annotated the utterance since its interpretation with respect
to the application is not affected. We argue that determining which utterances should be translated into
MRs is an important subtask for real-world applications of semantic parsing and decided to keep these
utterances in the corpus.

3.1 Annotation
The annotation was performed by Andreas Vlachos and Diane Nichols, a freelance linguist with no ex-
perience in semantic parsing, with further checking by Stephen Clark. As well as annotating the user
utterances, we also annotated the wizard utterances with dialog acts and the entities mentioned, as they
provide the necessary context to perform context-dependent interpretation. In practice, though, we expect
this information to be used by the natural language generation component to produce the SPACEBOOK’s
response and thus be available to the semantic parser.
The total number of user utterances annotated was 2374, out of which 1906 were annotated with MRs,
the remaining not translated due to the reasons discussed above. Table 1 has more statistics, including a
comparison with the popular GeoQuery and ATIS corpora. The number and types of the MRL vocabulary
terms used in the annotation appear in Table 2. The full lists of controlled vocabulary terms can be found
in the appendix.
In order to assess the quality of the guidelines and the annotation, we conducted an inter-annotator agree-
ment study. For this purpose, the two annotators annotated one dialog consisting of 510 utterances. Exact

document (/atis3/doc/pofi.doc) in the NIST CDs).
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vocabulary type number of terms
dialog acts 15
predicates 19
arguments 41
constants 9
entity types 26
properties 4

Table 2: MRL vocabulary used in the annotation

match agreement at the utterance level, which requires that the MRs by the annotators for an utterance
agree on dialog act, predicates and within-utterance variable assignment, was 0.804, which is a strong
result given the complexity of the annotation task, and which suggests that the MRL and guidelines for
it can be applied consistently. We also assessed the agreement on predicates using F-score, which was
0.914.
Variable assignment was more challenging to assess since agreement between two annotations relies on
measuring the identity between the variables assigned to different arguments rather than the variable
names themselves. Since variable names cannot be taken into account, we decided to treat each vari-
able as a cluster of argument slots and evaluate variable assignment as a clustering task. We chose to use
information-theoretic clustering evaluation measures which avoid the problem of cluster mapping; in par-
ticular we used the adjusted mutual information (AMI) measure [12] as implemented in the scikit-learn
toolkit [13]. AMI scores range from 0 to 1 and, unlike the more commonly used V-measure [14], are
adjusted for chance, assigning scores close to 0 for random clusterings. The AMI was found to be 0.974
at the utterance level, while for the whole dialog it was 0.948. Note that the commonly used Kappa statis-
tic [15] could not have been used for any of the evaluations given above, since it can only be applied to
classification tasks.

4 Dialog Act Tagging
In this section we describe the implementation of two dialog act taggers for the new corpus, one based on a
classification approach, using the AROW online learning algorithm, and the other treating the task as a se-
quence labelling problem, using a CRF toolkit. Determining the dialog act of an utterance is an important
stage in the SPACEBOOK semantic parsing task since, as described in above, some acts are accompanied
by predicates thus requiring further processing, while others are not. Hence, good performance at this first
stage is crucial to semantic parsing performance.
More specifically, dialog act tagging in the new corpus is the task of assigning to each user utterance one of
14 labels; 13 labels correspond to acts (two of the 15 acts defined are only relevant to wizard utterances)
plus an additional label for utterances that cannot be translated into MRs due to the reasons discussed
above. We consider the dialog acts for the wizard utterances to be given as part of the input, since we
assume that they will be available for the SPACEBOOK application.
The dialog act tagging task as defined by the application is greedy in nature. Every time a new user
utterance is encountered it needs to be labeled by the tagger, and this prediction is used to generate the
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response by the SPACEBOOK system and it is likely to affect how the dialog evolves. Thus, it is natural to
consider implementing a dialog act tagger using a classifier (which will be the first approach). However,
the utterances of both the wizard and the user are fixed in the new corpus and thus the dialog is not affected
by the acts predicted; i.e. the corpus dialog is not “dynamic” in the sense that a real dialog would be. For
example, if in a real dialog the system inferred that a user utterance was a proposition question, then the
next system utterance would be determined by that, even if the inference were incorrect. However, for the
corpus-based scenario, the next system utterance has already occurred and is fixed. Therefore, the dialog
act tagging task as defined by the corpus can also be seen as the prediction of a sequence of acts for the
user utterances in a dialog (which will be the second approach).
We developed the classifier-based dialog act tagger by implementing the adaptive regularization of weight
vectors (AROW) learning algorithm [16]. AROW is an online learning algorithm for linear predictors
that takes into account the rarity of each feature and adjusts the per-feature learning rates so that popular
features do not overshadow rare but useful ones. Adaptive learning rates have been shown to be beneficial
in other NLP tasks such as text classification [17]. Since we are operating in a batch learning setting (i.e.
we have access to all the training instances simultaneously), we perform multiple rounds over the training
instances randomly shuffling their order.
For the sequential prediction version of the tagger we used linear chain conditional random fields (CRFs)
[18] trained with stochastic gradient descent as implemented in the CRFsuite toolkit [19]. CRFs, un-
like classification methods, find the most likely dialog act assignment to a sequence of user utterances
jointly. Furthermore, unlike hidden Markov Models, CRFs learn conditional models and thus are able
to use arbitrary and possibly overlapping features over the input, so they can use the same features as
classification-based approaches.
In both approaches, utterances are represented using two sets of features: those based on the textual
content of the utterance and those based on the utterance preceding it. The former contains all unigrams,
bigrams and trigrams and final punctuation mark (if any). Unlike in typical text classification tasks,
content words are not always helpful in dialog act tagging; e.g. the word “church” in the user utterances
in Figure 1 is not indicative of set question, while n-grams of words typically considered as stopwords,
such as “what is this”, can be more helpful. The punctuation feature is used as a proxy to the prosodical
information commonly used in dialog act tagging for spoken language [3]. The features based on the
preceding utterance contain whether it was by the user or the wizard and in the latter case its dialog act.
Such features are useful in determining the act of short, ambiguous utterances such as “yes” which is
tagged as yes when following a prop question utterance by the wizard but as acknowledge otherwise.

4.1 Experiments
In order to assess the performance of the two dialog act taggers described in the previous section, we split
the annotated dialogs into two sets, one for training (and development) and one for testing. The former
consists of four dialogs within the first scenario and seven within the second (11 in total), while the latter
consists of three dialogs within each scenario (six in total). All development and feature engineering was
conducted using cross-validation at the dialog level on the training set. Cross-validation at the dialog
level instead of the utterance level ensures that each fold contains all utterances from complete dialogs,
rather than being made up of incomplete dialogs. The results reported below were obtained by training on
dialogs from the training set and evaluating on dialogs from the testing set. Since we modeled dialog act
tagging as a multiclass classification task we evaluate performance using accuracy.
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Figure 2: Accuracy under different evaluation setups.

We considered three evaluation setups. In the first setup, all training dialogs from both scenarios were
used to train the taggers, which are then evaluated on all testing dialogs from both scenarios. We refer
to this setup as mixed. A similar setup is commonly used in semantic parsing evaluations on the ATIS
corpus, in which dialogs concerning the same flight request are included in training, development and
testing sets defined. While this is a reasonable evaluation approach, it is likely to be relatively forgiving,
since in practice dialog act taggers and semantic parsers are likely to encounter scenarios unseen in their
training/development data. Therefore we considered a second evaluation setup in which the dialogs used
to train the taggers are from different scenario(s) than the scenario of the dialogs used to evaluate their
performance. We refer to this setup as cross. Finally, in order to assess the effect of the change in scenarios
used for training and testing, we considered a third evaluation setup in which the taggers are trained and
evaluated on training and testing dialogs from the same scenario, which we refer to as same. Since we
have dialogs from two scenarios in the new corpus, there are two experiments for the same and cross
setups, and we also present the overall accuracy across scenarios for each setup.
The accuracy of the two taggers is shown in Figure 2. Both taggers achieve promising performance in all
setups, including the more challenging cross setup. The AROW-based tagger achieves higher accuracy in
all cases except for one of the two cross experiments, thus suggesting that structure —at least as exploited
by the linear CRF and bearing in mind the other differences between the two learning algorithms— is
not as crucial to performance. This can be expected since user utterances usually occur in response to
those by the wizard (i.e. user utterances are more dependent on what the wizard just said, rather than the
previous user utterance which is what the CRF models as structure). The latter provide useful features
which are used by both approaches. Nevertheless, the difference in accuracy in the cross setup is much
smaller than in the same setup, thus suggesting that structure is more useful in that setup, and that the
primarily lexicalized features used might be less able to generalize well.
As there is substantial imbalance among the dialog acts in the corpus, we also evaluated performance for
each act using recall, precision and F-score. The results for the two taggers in the mixed setup are shown in
Table 3. Overall, the AROW-based tagger has better-balanced predictions and achieves higher F-scores for
most dialog acts, an effect more pronounced in the rarer labels. The same trend was also observed in the
other setups. The only act in which the CRF-based tagger performs better is prop question (questions
seeking a yes or no answer). Inspection of the training data showed that user utterances with this dialog
act are usually followed by an acknowledge user utterance, often in response to an answer by the wizard
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training testing AROW CRF
dialog act instances instances Recall Precision F-score Recall Precision F-score
acknowledge 670 172 0.913 0.935 0.924 0.93 0.856 0.891
inform 266 131 0.855 0.862 0.858 0.855 0.824 0.839
set question 267 96 0.927 0.774 0.844 0.906 0.744 0.817
prop question 77 33 0.515 0.531 0.523 0.545 0.857 0.667
yes 38 12 1.0 0.6 0.75 0.667 0.727 0.696
repeat 25 18 0.722 0.684 0.703 0.444 0.888 0.593
check channel 8 29 0.724 1.0 0.84 0.138 1.0 0.242
greet 11 5 1.0 0.833 0.909 0.4 0.667 0.5
no 9 5 0.8 0.572 0.667 0.2 0.5 0.286
wait 7 5 0.4 1.0 0.572 0.0 0.0 0.0
next instruct 6 4 0.25 1.0 0.4 0.0 0.0 0.0
apologise 9 1 1.0 0.333 0.5 0.0 0.0 0.0
ready 1 1 0.0 0.0 0.0 0.0 0.0 0.0
no MRL 375 93 0.602 0.7 0.647 0.645 0.522 0.577

Table 3: Per dialog act performance in the mixed evaluation setup for the AROW-based and the
CRF-based taggers.

to the question of the user. The CRF-based tagger, unlike the AROW-based one, can take advantage of
such patterns in the data and thus achieve better performance. However, as explained in the previous
section, such a sequential prediction approach which performs dialog act assignment jointly would not be
applicable in the inherently greedy application context considered. Finally, one of the most difficult labels
to predict for both taggers is no MRL, i.e. the label assigned to utterances that cannot be translated into
MRs. Such utterances are sometimes very similar to ones that should be translated and the distinction is
dependent on whether the proposed MRL can capture their meaning adequately. Therefore we expect that
performance on this label is likely to improve if dialog act tagging is performed as part of the semantic
parsing task defined by the new corpus.

5 Conclusions
In this report we described the SPACEBOOK MRL covering the domain of tourism-related activities and
a new corpus annotated with it. The MRL can handle dialog context such as coreference and can ac-
commodate utterances that are not interpretable according to a database. We conducted an inter-annotator
agreement study and found 0.804 exact match agreement between two annotators. The SPACEBOOK

MRL uses a wider controlled vocabulary than GeoQuery and ATIS (see Table 1 for a comparison). On
average, the dialogs are 15 times as long as the the dialogs of ATIS; thus coreference resolution is likely
to be harder. Although the new corpus has fewer utterances than ATIS, it has a wider vocabulary of NL
words. For these reasons, we expect this new corpus to be more challenging than previous commonly
used semantic corpora.
We performed experiments on dialog act tagging (a task that existing corpora do not require) using both
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classification-based and sequential prediction approaches achieving good performance. Furthermore, we
demonstrated how the new corpus can accommodate more realistic evaluations than those usually con-
ducted, by training on dialogs from different scenarios than the ones used for testing.

6 Difficulties and Future Work
The main reason that the full parser has not been developed in time for this Deliverable is the delay in
obtaining the Wizard-of-Oz data at the start of the project. Creating a corpus with manual annotation is
a significant, time-consuming exercise, requiring many months of annotation time. Hence once the delay
in obtaining the original data was incurred, it was not possible to make that time up in producing the
semantic parsing corpus.
In future work, over the next few months, we will develop an approach for the full semantic parsing task
defined by the new corpus. This work will be reported in deliverable D4.1.3, the final report on learning
semantic analysis components. More generally, as recent approaches to semantic parsing have achieved
rather high accuracies on existing corpora, we believe the new corpus will be a useful resource for the
wider research community in making further progress on the semantic parsing task. The corpus will be
made freely available for this purpose.
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Appendix
Below are the complete lists of the controlled vocabulary terms used in the annotation.

Dialog acts:

inform
instruct
prop_question
set_question
ready
processing
greet
acknowledge
yes
no
check_channel
repeat
next_instruct
wait
apologise

Predicates with their arguments and constant values:

isA(id:X, type:TYPE)
isMany(id:X, type:TYPE)
isNamed(id:X, name:*|X)
hasProperty(id:X, property:PROPERTY, value:*|X)
isVisible(target:X, observer:@)
position(id:X|@, location:X|forward|right|backward|left|at|in|beside, ref:X|@)
distance(location:X|@, location:X|@, value:*|X|near|far)
route(from_location:X|@, to_location:X|@, via_location:X)
turn(agent:@, direction:X|forward|right|backward|left, at_location:X)
walk(agent:@, along_location:X, to_location:X, cross_location:X, via_location:X,

direction:X|forward|right|backward|left)
def(id:X)
indef(id:X)
index(id:X)
next(id:X)
extraInfo(id:X)
inSet(member:X, set:X)
equivalent(id:X, id:X)
argmin(var:X, value:X)
argmax(var:X, value:X)

Entity types:
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atm
building
cafe
church_or_religious_centre
financial_institution
gym
health_centre
hill
historic_building
junction
library
museum
park
path
pedestrian_crossing
post_office
pub
restaurant
school_or_university
shop
statue
street
supermarket
theatre_or_concert_hall
traffic_light
walk

Properties:

cuisine_type
price_range
rating
size
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