
Version 1.0: (Final) Distribution: Public

D3.3.2 Final Populated City Model Component

Phil Bartie, William Mackaness,

Michael Minock, Johan Mollevik

Distribution: Public

SpaceBook

Spatial & Personal Adaptive Communication Environment:

 Behaviours & Objects & Operations & Knowledge

Deliverable 3.3.2

June 2013

Version 1.0: (Final) Distribution: Public

Project ref. no.
Project acronym
Project full title

Instrument
Thematic
Start date / duration

270019
SpaceBook
Spatial & Personal Adaptive Communication Environment: Behaviours &
Objects & Operations & Knowledge

STREP
Priority Cognitive Systems, Interaction, and Robotics
01 March 2011 / 36 Months

Security
Contractual date of delivery
Actual date of delivery
Deliverable number
Deliverable title
Type
Status & version
Number of pages
Contributing WP
WP/Task responsible
Other contributors
Author(s)
EC Project Officer
Keywords

Public
M27 = June 2013
1 June 2013
3.3.2
D3.3.2: Final populated city model component
Prototype
Final 1.0
16 (excluding front matter)
3
UE / UMU

Phil Bartie, William Mackaness, Michael Minock, Johan Mollevik,
Franco Mastroddi
City model, GIS, PostgreSQL, PostGIS, OpenStreetMap, spatial data,
networks, topology, route finding, wayfinding

The partners in SpaceBook are:

 Umea University UMU

University of Edinburgh HCRC UE

Heriot-Watt University HWU

Kungliga Tekniska Hogskola KTH

Liquid Media AB LM

University of Cambridge UCAM

Universitat Pompeu Fabra UP

For copies of reports, updates on project activities and other SPACEBOOK-related information, contact:

The SPACEBOOK Project Co-ordinator:

Dr. Michael Minock

Department of Computer Science

Umea University ˚

Sweden 90187

mjm@cs.umu.se

Phone +46 70 597 2585 - Fax +46 90 786 6126

Copies of reports and other material can also be accessed via the project’s administration homepage,

http://www.spacebook-project.eu

© 2013, The Individual Authors.

No part of this document may be reproduced or transmitted in any form, or by any means, electronic or mechanical, including photocopy,

recording, or any information storage and retrieval system, without permission from the copyright owner.

mailto:mjm@cs.umu.se

Version 1.0: (Final) Distribution: Public

Contents

1 Overview ... 2

1.1 Requirements .. 2

2 City Model Data Architecture ... 3

2.1 Edinburgh City Model Extent .. 3

2.2 Data Quality and Data Integration .. 3

2.3 Coordinate Systems .. 4

2.4 Sites (partonomic structure) ... 5

3 Data Sources ... 5

3.1 Landcover including Building Outlines (polygons) .. 5

3.2 Points of Interest (POI) .. 6

3.3 Route Networks (topological model) .. 7

3.4 Well Known Streets ... 9

3.5 Navpoints .. 9

4 Data Extraction, Transformation and Loading .. 10

5 Database Schema .. 11

5.1 Extensibility ... 11

5.2 Schema Overview.. 11

6 Example Queries ... 13

6.1 Shortest path... 13

6.2 Main Polygon Name .. 13

6.3 Fuzzy Name Searching .. 13

6.4 Joining tables... 14

6.5 Spatial Example ... 14

6.6 Nearest Road ... 15

7 Conclusion ... 15

8 References .. 16

270019 SpaceBook D3.3.1 June 1st, 2013 Page 1/16

Version 1.0: (Final) Distribution: Public

Executive Summary

This report accompanies the city model prototype and extends the work developed in D3.3.1 Initial

City Model and D3.1.2 The SPACEBOOK City Model.

The Populated City Model component is a storage facility for known physical features, and the uses

of those features, within the city. This includes polygons, points, and polylines as well as attribute

information. The City Model is stored in a PostgreSQL database using the PostGIS extension, and

includes the capability to carry out wayfinding tasks on a network using the pgRouting extension.

The network is suitable for pedestrian route finding, and includes steps and pathways not accessible

to vehicles. Topographic information for terrain elevation is stored with each network node and

segment midpoint so that additional hill details may be included in the wayfinding instructions.

The city model component accesses a number of feature type sources, such as OpenStreetMap, to

provide information on how space in the city is used, for example if a building includes a restaurant,

public telephone, or cash machine.

This report describes the data included in the model, the database schema, and examples of how it

may be accessed using SQL.

270019 SpaceBook D3.3.1 June 1st, 2013 Page 2/16

Version 1.0: (Final) Distribution: Public

1 Overview

The city model component in SpaceBook is the central repository for information about the city,

and is accessed by the Interaction Manager (IM) component (Figure 1). It contains both spatial

representations of features as well as attribute information, such as names and cuisine types. It

also includes a topological network dataset for determining optimum routes between locations.

PT

GNSS

TTS

ASR SA

NLG
IM

CM

QA

VE

USER

Figure 1: SpaceBook Components

ASR: automatic speech recognition SA: semantic analysis IM: interaction manager VE: visibility engine
 CM: city model QA: question answering NLG: natural language generation TTS: text to speech

GNSS: global navigation satellite system PT: pedestrian tracker

1.1 Requirements
The city model is required to support a number of queries which determine answers to

questions asked by the user including:

 Where is X?

 What is X?

 How do I get to X?

In addition to the user pulling information from the city model it is also used to push

information considered relevant and of interest to the user. This requires querying of the city

model at frequent intervals to determine what may be of interest to the user based on previous

preference selections, user histories, and context (eg vista space, time of day, weather, current

task).

To answer questions on ‘how do I get to?’ or ‘where is?’ the model calculates the most suitable

pedestrian route using a topological network, and supplies details with reference to key

navigational landmarks visible along the journey.

270019 SpaceBook D3.3.1 June 1st, 2013 Page 3/16

Version 1.0: (Final) Distribution: Public

2 City Model Data Architecture

2.1 Edinburgh City Model Extent

The Edinburgh City Model is centred on Waverley Station and Princes Street and covers just over

6km by 4.5km as shown in Figure 2. It consists of 124429 polygons, 23335 points, and 10578

polylines.

(MasterMap data, Ordnance Survey © Crown copyright. All rights reserved OS)

Figure 2: Edinburgh City Model Extent

2.2 Data Quality and Data Integration
There are many sources of data of varying quality and completeness available which can be

used to populate the city model. There is however a requirement to define a base layer which

forms the foundation to which other datasets are attached. For reasons of positional accuracy,

completeness, quality, and resolution the Ordnance Survey Master Map (OSMM) digital data

series was selected for the Edinburgh pilot study area. In other regions where such sources are

not available OpenStreetMap (OSM) data may be used. However the digitisation processes used

in populating the building polygon layer in OSM varies greatly across cities, and most frequently

does not consider radial distortion issues. As a result buildings are mapped to their roof line,

rather than their foundation, and this introduces building location errors up to tens of metres

270019 SpaceBook D3.3.1 June 1st, 2013 Page 4/16

Version 1.0: (Final) Distribution: Public

from their actual location. The OSM data itself does not contain building height information and

therefore is considered unsuitable for use with visibility analysis.

While the Ordnance Survey (OS) provide a number of road transport network layers, such as the

Integrated Transport Network (ITN), they are less suited to the access pathways used by

pedestrians than that available from OSM. Therefore OSM routes were used in forming the

topological network which to support way-finding tasks.

The Point of Interest (POI) were sourced from OS PointX, OSM, and the Gazetteer for Scotland.

Please note that due to data licencing requirements the OS (Master Map and PointX) and

Gazetteer for Scotland data, and derived products, have had to be removed from the public

populated city model prototype.

2.3 Coordinate Systems
The most popular Global Navigation Satellite Systems (GNSS) is the US based Global Positioning

System (GPS) which uses the WGS84 geographic coordinate system (i.e. EPSG:4326). While

WGS84 is a suitable general model for world based navigation there are a number of advantages

in using a local projected coordinate system for the city model. These include the ease and

speed of calculating distances and areas, and greater functionality available in PostGIS, the

spatial database extension used to handle the city model data inside PostgreSQL.

For the Edinburgh pilot study region the British National Grid (OSGB36) is used (i.e.

EPSG:27700). There are a number of transformations available between WGS84 and OSGB36,

varying in complexity and spatial accuracy. The most accurate uses an NTv2 grid transformation

(also known as OSTN02 in UK) as it introduces minimal positional errors, however for

Edinburgh the difference in value between a 7 parameter transform and an NTv2 transform are

less than 1 metre. NTv2 grids are not so commonly supported in applications, and if both the

city model and user’s GPS location are transformed using the same algorithm then any offsets

will be aligned. For this reason a 7 parameter transformation will be used throughout the

project for the Edinburgh test area.

The function to convert from WGS84 to OSGB36 is provided using the open source CS2CS tool as

follows:

cs2cs +proj=latlong +ellps=WGS84 +towgs84=0,0,0 +nodefs +to +proj=tmerc

+lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy

+towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894 +units=m

+no_defs

Test for a point in Edinburgh (Scotland): WGS84 location (–3.185, 55.95)

OS Online NTv2 Conversion: (326097.07,673630.932) [taken to be correct conversion]

ESRI (3 par option_1): (326097.86,673625.357)

ESRI (3 par option_5): (326095.042,673619.452)

ESRI(petroleum option): (326096.974,673630.405)

CS2CS (as above): (326096.98,673630.4)

Note the 5-10m errors introduced when using 3 parameter transformations.

A large number of datasets from a range of providers are fused together in the city model, in

many cases relying on the spatial location to link data.

270019 SpaceBook D3.3.1 June 1st, 2013 Page 5/16

Version 1.0: (Final) Distribution: Public

2.4 Sites (partonomic structure)
The database has been built around points, lines, and polygons. The polygons are treated as the

smallest regional unit and the type is in the isa table (eg building, road region). However collections

of polygons may be treated as sites, such as Edinburgh Castle which consists of 326 polygons (see

Figure 3). The membership of these sites is handled in the city model using two tables which are the

sitelink table, and sitelink_site table. A polygon may be a member of many sites (eg part of

Edinburgh Castle, and also part of the Old Town). The hierarchy of memberships can be calculated

by checking the site_area value, which is calculated from the combined area of polygon members.

Tables: sitelink: id (integer) site_id (bigint)

 sitelink_site: site_id (bigint) site_name (text) site_type (text)

 site_area (double precision)

3 Data Sources

The following section outlines the datasets used in the Edinburgh City Model, some of which are

used under licence and not publicly available.

3.1 Landcover including Building Outlines (polygons)
The OS MasterMap layer gives 100 percent coverage of the test region space, and defines the land

surface type (natural land, building, river, etc). This layer is used to define building objects, which

when linked to the DSM/DTM is used to calculate their visibility by the visibility engine component.

(MasterMap data, Ordnance Survey © Crown copyright. All rights reserved OS)

Figure 3: Edinburgh Castle as a Site

270019 SpaceBook D3.3.1 June 1st, 2013 Page 6/16

Version 1.0: (Final) Distribution: Public

(MasterMap data, Ordnance Survey © Crown copyright. All rights reserved OS)

Figure 4: Landcover

3.2 Points of Interest (POI)
The POI layer adds attributes for building use (eg café, restaurant) and other facilities such as public

telephones and ATMs.

(PointX dataset - Ordnance Survey © Crown copyright. All rights reserved OS)

Figure 5: Points of Interest

270019 SpaceBook D3.3.1 June 1st, 2013 Page 7/16

Version 1.0: (Final) Distribution: Public

3.3 Route Networks (topological model)
The road network is used to determine the optimum path between destinations, and is suitable for

pedestrian wayfinding. This is sourced from OSM and includes main roads, tracks, paths, and steps.

(© OpenStreetMap contributors)

Figure 6: Road Network

The network is stored in two complimentary ways. The network and node table can be used by

pgRouting to calculate the shortest path. However the network data are also stored as separate

parts as tables network_edge, network_vertex, network_lieson. A street is defined as a collection of

network segments which connect to each other and have the same name, the geometry is stored in

the haspolyline table, and attributes are held in the isnamed and isa tables. All geometries are

defined using vertices, and a node is a special vertex found at decision points (junctions), ends of

network (cul de sac), or where there is a change in network type (eg road, bridge, steps). An edge is

a straight line between two vertices, which are joined together to make network table. Further

definitions are given in Figure 7.

270019 SpaceBook D3.3.1 June 1st, 2013 Page 8/16

Version 1.0: (Final) Distribution: Public

(© OpenStreetMap contributors)

Definitions:

 network_edge => each unique number between vertices

 node => junction point (between many edges, or end of an edge, or inline where network edge type changes (eg

street, steps))

 network => junction to junction road pathways (eg q1,q2,q3) – can be single edge or many edges depending on

road pathway

 isa type = ‘street’ => collection of network pathways which connect and are of same name (eg Q may consist of

q1, q2, q3)

 haspolyline => stores the geometry for the ‘street’ level of road network (with isnamed and isa tables)

 network_lieson => id of each network feature, and the street id that it occurs on (eg edges, nodes all occur on a

street id)

 network_vertex => every point which defines a road network pathway exists as a uniquely identifiable vertex in

this table, those which are nodes also appear in the node table and in the isa table under type ‘junction’

 isA = ‘street’ => this id at street level will be found in the haspolyline, isnamed tables. Also in the network_lieson table which

will be the link to network_edge, network, and the nodes.

(© OpenStreetMap contributors)

Figure 7: Network Table Definitions

270019 SpaceBook D3.3.1 June 1st, 2013 Page 9/16

Version 1.0: (Final) Distribution: Public

3.4 Well Known Streets
To be able to better model the user as they explore Edinburgh data were collected on how well each

network segment is known. This included using FlickR photograph locations, and Foursquare

checkins to determine which parts of the city and streets were the most frequently visited. These

values were normalised as integer values from 1-1000 and saved in the network_known table.

Higher values indicate the street is generally better known, and this can be used to customise route

instructions, or to suggest places to visit when pushing information to the user.

 (© OpenStreetMap contributors)

Figure 8: Well known streets of Edinburgh (shaded darker if better known)

3.5 Navpoints
Navpoints were introduced as an alternative location to the hasPoint for OS PointX data that

included a street address. Using this information it was possible to geocode the OS PointX data to

the main address location and snap this to the OSM street network. This is useful during navigation

tasks to ensure the user is directed to the main entrance rather than nearest street based on the

270019 SpaceBook D3.3.1 June 1st, 2013 Page 10/16

Version 1.0: (Final) Distribution: Public

location of the hasPoint feature which could be a rear or side street without building access. Figure 9

shows an example of the navpoint for the National Museum of Scotland, which is situated on

Chamber Street and the corresponding hasPoint which is arbitrarily located within the building

polygon, and actually closer to the rear street which has no public access to the building.

(Ordnance Survey © Crown copyright. All rights reserved OS)

Figure 9: Navpoint (black squares) and corresponding hasPoint (green circle)
for National Museum of Scotland

4 Data Extraction, Transformation and Loading

The following steps were carried out to extract, transform and load various data into the city model

component, which can be queried in real time from other SpaceBook components (see Figure 1).

1) Prepare GIS datasets as Shapefiles by using the field calculator to set IDs to increase from 1

2) Load the shapefile dataset into PostGIS using OGR2OGR (open source tool)

ogr2ogr -f "PostGreSQL" -a_srs "EPSG:27700" PG:"host=localhost

user=yourusername dbname=sbcitymodel password=yourpassword"

c:\dataset.shp

3) Use OGR2OGR to load OS Master Map polygon building layer

To load MasterMap into PostGIS requires the removal of any Int64 columns. Also when

selecting polygons from OSMasterMap for a desired Area of Interest a clipping tool should

not be used, as it results in duplicated TOIDs and a multipolygon data type. Instead a

polygon selection based on spatial intersection is required, giving a ragged edge but

ensuring a polygon data format with unique TOIDs.

270019 SpaceBook D3.3.1 June 1st, 2013 Page 11/16

Version 1.0: (Final) Distribution: Public

ogr2ogr -f "PostGreSQL" -a_srs "EPSG:27700"

PG:"host=localhostuser=yourusername dbname=sbcitymodel edin

password=yourpassword" c:\dataset.shp

4) Topological Network

The previously developed OSM2SB tool (D3.1.2) allows for OpenStreetMap XML data to be

uploaded to the central PostgreSQL database. One of the layers available from this is a route

network which provides details of the pedestrian pathways, tracks, steps and roads.

The network table is used by the pgRouting database extension, which must be installed on

the host database server. This is done by downloading the pgRouting extension and running

routing_core.sql, routing_core_wrappers.sql, routing_topology.sql files from the

City Model database.

5 Database Schema

5.1 Extensibility
The city model adopts a vertical partitioning approach to data storage, as outlined in public

deliverable D3.1.2. This enables new data and knowledge about existing entities to be easily added

to the city model without database redesign. The mostly static nature of the city model enabled

wide variety of GIST-based indexes [1] without having to consider the costs of run-time insertion into

the indexes. It is important to write spatial SQL queries that use these indexes during execution.

5.2 Schema Overview

An overview of the tables within the City Model is provided here, further details may be found in

D3.1.2.

Table Description

_featuretypes_level1
_featuretypes_level2
_featuretypes_level3
(catid, featuretype)

A hierarchical definition of feature types which are used in the isa table. These tables
are for reference and are based on the Ordnance Survey Points of Interest user guide
contents.
e.g. (level 3) accommodation_eating_and_drinking > (level 2) eating_and_drinking >
(level 1) cafes_snack_bars_and_tea_rooms

_saliency_brandname (name,
score)

A table for defining the better known brand names in Edinburgh based on crowd
sourced datasets

_source(id,source,confidence) A variety of data sources are used in the city model, and this table is used to track their
origin. A confidence value is assigned based on the source and its trustworthiness. This
value may be used to determine the most best feature to use when two or more are
returned (eg for points of interest within a building polygon)

entity(id) An entity is an object or a region. The argument id comes from a common namespace
of integer values.

isA(id,type) Each entity has a set of associated types. A given entity may be a member of multiple
predicates. For example a given object could be both a bar and a restaurant.

isNamed(id,name,namesearch) This associates text with an entity. The namesearch attribute is
a tokenization of the given name represented in a tsvector.

270019 SpaceBook D3.3.1 June 1st, 2013 Page 12/16

Version 1.0: (Final) Distribution: Public

The tokenization speeds up partial string matches.

hasProperty(id,property,value)

This may be used to store extra information relating to an entity. The property field
defines what type of information is stored. For example it is used to store cuisine type
for restaurants and cafes. It may also be used to store telephone numbers, web
addresses, street addresses and so on.

hasVisualDescription(id,type,
value)

The City Model is able to store visual description details for entities. These may be
used when assisting the user to identify an
object in a view, or to find the destination. This table consists of
types: is, has, opposite, nextto. This enables more intuitive ways
of describing features in a form that it meaningful at the level of
the pedestrian

hasPoint(id,geom) Stores points of information across the city (eg hotel)

hasPolyline(id,geom) Stores streets, rivers, rail

hasPolygon(id,geom) Stores the regions which define buildings, open spaces, rivers etc

hasPolygon_dtm (id,dtm) The z value for the base of each polygon is stored so that relative heights of buildings
may be used in the project. For example in describing a building as being further up a
hill, or higher than the user. The z values were sourced from the value of the DTM.

sitelink(id,site_id) The sitelink table enables the definition of sites which consist of sets of haspolygon
features. Edinburgh Castle is an example of site which consists of over 300 polygons.
This enables partonomic modelling within the City Model.

sitelink_site(site_id,site_name,
site_type, site_area)

This stores the site information, name, type and the ares is used to determine the site
hierarchy should a polygon be a member of many sites (eg Edinburgh Castle and Old
Town).

sblink (id, within_id, score) The sblink table stores the results from spatially joining the haspoint and haspolygon
table based on point in polygon relationship.

node(id, geom, nodetype,
z,connections)

Corresponds to a branching point [2]. The z value comes from the DTM.

network (id, geom, pathtype,
length2d,
length3d, rdlength,
startpoint,endpoint,
start_id, end_id, sview, midptz,
sinuosity, bendpt, bends,
bendang)

Corresponds to a path segment [2]. The value for length3D is calculated across the
terrain surface so includes real walked distance across hills, rather than straight line,
point to point, distances. The attribute sview is a boolean for if the road is available in
StreetView for web based trials, used to change behavior of routing engine (eg not
tracks, steps, Princes street and other non-accessible streets to private vehicles). The
attribute midpt is the DTM elevation at the midpoint along that edge used to calc if
youre going up or downhill from a node (which have their own z elevation values) The
attribute sinuosity is the calculated ratio of edge length against Euclidean distance
from start to end node to give a value for how straight or bendy that edge is. The
attribute bendpt is the greatest bend in the path segment and the bendang is the
angle of such a bend.

Network_Vertex(id,geom) Defines the network path shape

Network_Edge(id,fromId,toId,ge
om,type,networkid,
networksequence)

Corresponds to an elementary segment [2] between 2 vertices. The network sequence
value indicates the order an edge occurs along a network segment.

navPoint(geom, id,
nearest_node, on_roadid)

where id relates to the hasPoint id nearest_node is the closest node id on_roadid is
the network id that the navpoint is on these are stored in this table for speed purposes
so we don’t need to repeatedly carry out spatial joins.

vernnames (name,namebreak) The vernacular names in the isnamed table which relate to the haspolygon and isa
entires were sourced from processing FlickR data. The delivery of tags from FlickR can
have spaces removed, and this table stores the results of breaking those names into
their most likely original form.

270019 SpaceBook D3.3.1 June 1st, 2013 Page 13/16

Version 1.0: (Final) Distribution: Public

6 Example Queries

6.1 Shortest path

Calculate the shortest path between two nodes on the network using pgRouting.

SELECT vertex_id,edge_id,cost FROM shortest_path('SELECT id AS id,start_id::int4 AS

source,end_id::int4 AS target,length3d::float8 AS cost FROM network', 2007554, 2006726,

false,false;

6.2 Main Polygon Name
As each polygon may have many points of interest within it, there was need to develop a method to

rank the output and offer the most suitable name for that polygon. This is considered as the

mainname, although the polygon may be known by any of occupant names. For example a building

may be occupied by Blackwells bookshop, Café Nero coffee shop, and an accountant office space

above. When pushing information to the user it is necessary to determine the most suitable name to

use for that building. This is performed using the sb_polygonname(entity id) function.

select * from sb_polygonname(1);

6.3 Fuzzy Name Searching

To improve name based searching a fulltext search function is used. This will find results with words

in different orders and ignores stop words. For example searching for ‘Edinburgh University’ would

also find ‘The University of Edinburgh’. The method supports & (and), | (or), and ! (not) parameters.

select * from sb_name_fulltext('the & mound');

270019 SpaceBook D3.3.1 June 1st, 2013 Page 14/16

Version 1.0: (Final) Distribution: Public

select * from sb_name_fulltext('the & mound & !place');

6.4 Joining tables
The following example shows how to use the entity id in a join between the isNamed table and the

hasProperty table to find places that sell pizza.

select a.id,a.name,b.value from isnamed a

join hasproperty b on a.id=b.id

where property = 'cuisine_type' and value='pizza';

6.5 Spatial Example
This example demonstrates how to supply a coordinate and return all entities within 80 metres. The

st_dwithin(geom,geom,double) automatically makes use of any existing spatial indexes.

select a.id,b.name, st_distance(a.geom,st_geometryfromtext('Point (325762 673323)', 27700)) as

distance from haspoint a join isnamed b on a.id=b.id where

st_dwithin(a.geom,st_geometryfromtext('Point (325762 673323)', 27700),80);

270019 SpaceBook D3.3.1 June 1st, 2013 Page 15/16

Version 1.0: (Final) Distribution: Public

6.6 Nearest Road

A frequent requirement is to determine the closest node or network segment from a supplied user

position coordinate. To make this process simpler a function was added which returns the closest

road, from which the corresponding nodes can be retrieved. For example in Figure 10 the user

located at A would be considered to be on the Princes Street network segment 803865. The straight

line distance from the user to the network road centreline is also returned.

A

Figure 10: Nearest Road for a Supplied Coordinate

select * from sb_nearest_road(325135.1,673831.9);

7 Conclusion

The city model plays a critical role in the SPACEBOOK project. It is the spatial repository which stores

the geographic and related attribute information for features in the city upon which the Interaction

Manager and other modules rely. The spatial database used was PostgreSQL [3], with PostGIS and

pgRouting extensions, and data is retrieved using spatial SQL [4,5].

Modelling the pedestrian for navigation is more difficult than vehicle navigation, as pedestrians are

able to explore more freely and are not strictly tied to road networks but can also use open spaces,

footpaths, and steps. In examining the ways that pedestrians navigate that space, it was clear that

rich descriptions of space were required in order to unambiguously instruct the pedestrian and to

refer to different objects relative to other features. This required us to model the city at different

270019 SpaceBook D3.3.1 June 1st, 2013 Page 16/16

Version 1.0: (Final) Distribution: Public

partonomic scales, to include the facility to store visual description of buildings, and to consider the

familiar and the vernacular information gathered from social media sites such as Foursquare and

Fickr.

In the past 12 months, the Edinburgh City Model has handled 7.8 million queries with an average

processing time of 4ms and PostgreSQL and PostGIS have proven to be a stable platform with very

good performance.

8 References

[1] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized search trees for database systems. In

VLDB, pages 562–573, 1995.

[2] Kai-Florian Richter and Alexander Klippel. A model for context-specific route directions. In Spatial

Cognition, pages 58–78, 2004

[3] B. Momjian. PostgreSQL: Introduction and Concepts. Addison Wesley, 2001.

[4] H. Samet. Applications of Spatial Data Structures. Addison-Wesley, Reading, Massachusetts,

1990.

[5] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2003.

	1 Overview
	1.1 Requirements

	2 City Model Data Architecture
	2.1 Edinburgh City Model Extent
	2.2 Data Quality and Data Integration
	2.3 Coordinate Systems
	2.4 Sites (partonomic structure)

	3 Data Sources
	3.1 Landcover including Building Outlines (polygons)
	3.2 Points of Interest (POI)
	3.3 Route Networks (topological model)
	3.4 Well Known Streets
	3.5 Navpoints

	4 Data Extraction, Transformation and Loading
	5 Database Schema
	5.1 Extensibility
	5.2 Schema Overview

	6 Example Queries
	6.1 Shortest path
	6.2 Main Polygon Name
	6.3 Fuzzy Name Searching
	6.4 Joining tables
	6.5 Spatial Example
	6.6 Nearest Road

	7 Conclusion
	8 References

