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Executive summary
The goal of this part of Work Package 3 was to develop techniques for automatically populating the city
model database by automatic analysis of text. In the Natural Language Processing community this task is
known as Information Extraction (IE). An example would be taking a textual description of the Festival
Theatre in Edinburgh and learning that it has a glass front; this information could then go into the database
and be used by the SpaceBook system. Rather than focus on spatial descriptions, as the title of this
report suggests, we first considered two relations which would be particularly useful for SpaceBook: the
architects and completion dates of historical buildings. If this initial work was successful, we could then
consider extending the IE system to extract additional relations, including relevant spatial descriptions.
The focus of this report is a description of the IE system based on a technique called distant supervision.
Recent approaches following the distant supervision paradigm have focused on obtaining supervision for
relation extraction by exploiting existing knowledge bases (KBs), from which they extract large sets of
training seeds and entity lists, thus obviating the need for manual annotation. However, such KBs are not
available for SpaceBook. Hence we have developed a novel IE approach that assumes only a small set
of relation seeds and a search engine. We learn relation extractors following the techniques from [1] and
evaluate them on two relations (architect name and completion year of buildings, as described above) and
obtain good results using around 30 seeds. We also show how we improved the performance by learning
entity filters jointly with the relation extractors using a technique from machine learning called imitation
learning.
The report concludes with the difficulties we experienced in carrying out this research and some ideas for
future work.
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1 Introduction
The work in this report is related to the following task in Work Package 3:

T3.2: Design and evaluate algorithms to extract relevant facts (e.g. visual descriptions) from geo-
tagged texts over entities of interest for inclusion in the city data model

UCAM was the main partner responsible for carrying out this task, and we chose to see it as an example of
Relation Extraction, and more broadly as an example of Information Extraction (IE). Rather than focus on
geo-tagged texts, as the task description suggests, we focused on readily available textual sources from the
web (e.g. Wikipedia) and investigated whether information relevant to the SpaceBook city model could
be automatically extracted from such sources.
Relation extraction between entities expressed in text is a popular natural language processing task ap-
plied to a variety of domains ranging from relations between persons and organizations [2] to biomedical
interactions [3]. Relation extraction systems are commonly developed by training a supervised method on
manually annotated data. While this paradigm has been successful, the need for annotated data limits its
applicability in real-life applications.
In order to overcome this issue, recent work has focused on using existing knowledge bases (KBs) to
generate annotated data that are used to train relation extraction systems, a paradigm commonly referred
to as “distant” or “weak” supervision [4, 1]. Intuitively, relation tuples and entity lists are obtained from
the KB and aligned with sentences from a text collection. If a sentence contains the entities forming a
relation tuple, then the sentence becomes a positive relation extraction training instance for that relation,
otherwise a negative one. While such automatically generated data contains noise, this paradigm has been
shown to perform well [5, 6, 7].
A common characteristic of most relation extraction approaches in the distant supervision paradigm is that
they consider as input a large KB, e.g. [1] reported using 7K-140K tuples per relation. Furthermore, they
typically assume that the KB contains all the entities participating in the relations of interest, as they are
used to construct the training and testing instances. However, it is often the case that such resources are
unavailable in real-world applications. For example, in constructing a KB for SpaceBook we would like
to extract information such as the architect of a historical building or the price range of food served in a
particular restaurant, for which large sets of seeds and complete lists of entities are unlikely to be found in
an existing KB.
In this work, we introduce a new framework for learning relation extraction, using only a small set of seeds
and a search engine, which we believe places the task closer to the needs of real users, and makes it more
appropriate and useful for the SpaceBook application. Using this framework, we learn extractors following
the approach of [1] for two relations (architect name and completion year for historical buildings) and
achieve good extraction performance using only 30 seeds.
Furthermore, we show how relation extraction performance can be improved by using entity filters as
a first step in relation extraction. We avoid annotating training data for this task by learning an entity
filter jointly with the relation extractor for each relation. For this purpose we use the imitation learning
algorithm DAGGER [8], which can handle the dependencies between actions taken in a sequence, and
use supervision for later actions to learn how to take actions earlier in the sequence. Compared to the
approach of [1], the jointly learned entity filters resulted in gains of 7 and 30 points in average precision
for the completion year and the architect name relations respectively.

Version: 1.0 (Final) Distribution: Public



270019SpaceBook D:3.2 January 28, 2014 Page 3/13

To summarise, we have found that the real-world setting of the SpaceBook application places new de-
mands on a Relation Extraction system, which we have responded to by developing a new approach using
the distant supervision paradigm.
In the remainder of this report we give an overview of our approach in Section 2. Section 3 describes how
we apply distant supervision to the task, and how a pipeline of machine-learned classifiers can be used to
decide if a particular pair is part of a particular relation (e.g. is Robert Adam the architect of Bute House?).
Section 4 is a technical description of how we use imitation learning to learn the classifiers in the pipeline.
Section 5 describes the experiments we ran to test the system, with empirical results. Section 6 describes
how our new approach is related to existing work. Finally, Sections 7 and 8 provide some conclusions and
suggestions for how the approach could be applied more broadly, beyond the two relations investigated,
as a way of populating the SpaceBook city model database.

2 Approach overview
We will use the architect-building relation as an example to give an overview of our approach, as shown in
Figure 1. The input to our approach consists of a few tuples and a set of keywords for each relation. Each
tuple contains a question entity paired with the answer entity that is the correct answer for the relation in
question. The keywords would be the search terms employed to find webpages likely to contain the answer
using a search engine. The output of our approach is a system that, given an unseen question entity, returns
the correct answer entity for the relation of interest. Figure 1 depicts the various stages of our approach for
the architect name relation, in which the tuples “Advocates’ Library - William Playfair” and “Bute House
- Robert Adam” are the seeds given and the answers for “Dunstane House” and “Craigiehall” are sought.
We construct a training dataset for relation extraction in the following way. Initially, we query the web us-
ing a search engine combining each question entity with the relation keywords and build a text collection.
In this process we ignore the answer entities, since they are not available when collecting texts for ques-
tion entities during testing. We then extract the sentences mentioning the question entity. In each of these
sentences, we recognize candidate answers using simple heuristics, for example if the answer entities to
the relation are named entities then the candidate answers could be sequences of capitalized tokens.
Note that this is unlike recent work in distant supervision which assumes that both question and answer
entities are available and commonly uses an existing named entity recognition system to align them with
sentences in the text [7]. While we assume that the question entities are given, we rely on the keywords
used in the search engine queries in order to extract sentences containing the question entities intended
rather than synonymous ones. For example, the keyword “building” would help avoid extracting sentences
containing other entities synonymous with a building of interest. Furthermore, since buildings are not
among the standard named entity types recognized by existing systems, approaches relying on them would
be unable to handle them well.
For each candidate answer, we generate an instance consisting of the sentence, the question entity and
the candidate answer itself. We label each instance using the distant supervision assumption; i.e. if the
candidate answer is the correct answer for the question entity then it is labeled as positive, otherwise
as negative, thus creating annotated data to learn a relation extractor. Intuitively, the task defined can
be stated as: “Does this sentence express that the candidate answer has the relation of interest with the
question entity?” As expected, these labels are likely to be noisy; for example a sentence mentioning a
building and its architect does not necessarily express the architect-of relation between them.
During testing, the same procedure to collect texts mentioning the question entity and extract instances is
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relation keywords: building, architect
question answer
Advocates’ Library William Playfair
Bute House Robert Adam
Dunstane House ?
Craigiehall ?

sentences
The Advocates’ Library is currently located in a
William Playfair- designed building.
Bute House is unusual in Robert Adam’s design for
Charlotte Square in having a central front door.
Dunstane House in Edinburgh was built in 1852 to the design of
architect William Playfair.
The 16-room Dunstane House was originally built by the Ross
family as their private home in 1852.
Dunstane House was designed by famous architect
William Playfair.
Craigiehall is a late-17th-century country house, which now
serves as the headquarters of the Second Division of the
British Army.

label question candidate sentence
training instances

+ Advocates’ Library William Playfair The Advocates’ Library. . .
+ Bute House Robert Adam Bute House is unusual. . .
- Bute House Charlotte Square Bute House is unusual. . .

predicted instances
- Dunstane House Edinburgh Dunstane House in. . .
+ Dunstane House William Playfair Dunstane House in. . .
+ Dunstane House Ross The 16-room Dunstane. . .
+ Dunstane House William Playfair Dunstane House was. . .
- Craigiehall Second Division Craigiehall is a . . .
- Craigiehall British Army Craigiehall is a. . .

relation extractor

question answer score
Dunstane House William Playfair 2

Ross 1
Craigiehall

WEB

DISTANT SUPERVISION

TRAIN

PREDICT

OUTPUT

Figure 1: The stages of our proposed approach applied to the architect name relation.

followed for new question entities, with the exception that the instances are not labeled. For each question
entity, the trained relation extractor is applied to all its instances and the candidate answers are ranked
according to the number of instances containing them that were labeled positive by the classifier.

3 Learning relation extraction
Following [1], for each relation we learn a relation extractor using the positive and negative instances
generated using the distant supervision assumption as described in the previous section. Each instance
consists of a candidate answer, a question entity and a sentence, and we extract features describing the
candidate answer and the relation between the candidate answer the question entity. The former include
the tokens, their lemmas, information on their capitalization, the words and the bigrams preceding or fol-
lowing the candidate answer in the sentence, as well as the lemmas of the words one syntactic dependency
away from it conjoined with the dependency. The latter include the lexicalized dependency path from the
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question entity to the candidate answer, as well as the lemmas on this path.
To learn the binary classifier for each relation we implemented the adaptive regularization of weight vec-
tors (AROW) algorithm [9]. AROW is an online algorithm for linear predictors, thus it scales easily to large
datasets. In addition, it takes into account the rarity of each feature and adjusts the per-feature learning
rates so that popular features do not overshadow rare but useful ones. Furthermore, it can handle non-
separable data, which is likely to be useful given the noise due to the distant supervision assumption.
Since we are operating in a batch learning setting (i.e. we have access to all the training examples and
their order is not meaningful), we perform multiple rounds over the training examples randomly shuffling
their order, and average the weight vectors. Finally, to further reduce the effects of noise, we removed
features appearing only once in the training data.
As we do not assume a list of entities, the task becomes harder than the one commonly tackled in distant
supervision approaches, since the candidate answers are very often inappropriate for the relation at ques-
tion. Therefore, it would be beneficial to have an entity filter tailored to the relation of interest, e.g. a
filter that would accept “William Playfair” (a famous architect) but reject “Ross” (the owners) in Figure 1.
Since labeling data for every new answer entity type to learn such filters would be impractical, we learn it
jointly with relation extraction using imitation learning, which will be discussed in detail in the following
sections.

4 Imitation learning
Imitation learning algorithms aim at learning controllers from demonstrations by human experts [10, 11].
Unlike standard reinforcement learning algorithms [12], they do not require the specification of a reward
function by the user. Instead, the algorithm observes a human expert performing a sequence of actions to
predict instances of the task in question and learns a policy that “imitates” the expert with the purpose of
generalizing to unseen data. These actions have dependencies between them, since earlier ones affect the
ones following them and successful imitation algorithms learn how to take them into account.
Imitation learning algorithms such as SEARN [13] and DAGGER [8] have been applied successfully to a
variety of tasks such as summarization, biomedical event extraction and dynamic feature selection [13, 14].
In this work we focus on DAGGER as it has been shown to be more stable than SEARN [8] and highlight
its ability to handle missing labels in the training data.

4.1 DAgger
The dataset aggregation (DAGGER) algorithm [8] forms the prediction of an instance s as a sequence of
T actions ŷ1:T predicted by a learned policy which consists of one or more classifiers. Each action ŷt can
use features from s and all previous actions ŷ1:t−1, thus exploiting possible dependencies. The number of
actions T taken in predicting each instance is not defined in advance but it depends on the actions chosen.
During training, DAGGER converts the problem of learning how to predict sequences of actions into cost
sensitive classification (CSC) learning. In CSC each training example has a vector of misclassification
costs associated with it, thus rendering some mistakes on some examples to be more expensive than
others [15]. The dependencies between the actions are learnt by appropriate generation of CSC examples.
In particular, the features for each action yt can take into account all previous actions ŷ1:t−1, while the costs
for each possible action ct take into account the effect of yt on the remaining sequence of actions. The
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Algorithm 1: Imitation learning with DAGGER

Input: training instances S , expert policy π?, loss function `, learning rate β, CSC learner
CSCL

Output: Learned policy HN
CSC Examples E = /0;1

for i = 1 to N do2

p = (1−β)i−1 ;3

current policy π = pπ?+(1− p)Hi−1 ;4

for s in S do5

Predict π(s) = ŷ1:T ;6

for ŷt in π(s) do7

Extract features Φt = f (s, ŷ1:t−1) ;8

foreach possible action y j
t do9

Predict y′t+1:T = π(s; ŷ1:t−1,y
j
t ) ;10

Estimate c j
t = `(ŷ1:t−1,y

j
t ,y′t+1:T ) ;11

Add (Φt ,ct) to E;12

Learn Hi =CSCL(E) ;13

cost for each possible action y j
t is estimated by assuming that the action y j

t was taken; then the following
actions for that instance yt+1:T are predicted using the learned policy Hi, and the whole sequence of actions
is compared against the correct output for that instance.
Algorithm 1 presents the training procedure of DAGGER in more detail.DAGGER requires a set of labeled
training instances S and a loss function ` that compares complete action sequences for instances in S
against the correct output for them. In addition, an expert policy π? must be specified which is a function
that returns the optimal action ŷt for the instances in the training data, which is akin to an expert demon-
strating the task. π? is typically derived from the labels of the training instances; for example in part of
speech tagging π? would return the correct tag for each token. In addition, the learning rate β and a CSC
learner (CSCL) must be provided. The algorithm outputs a learned policy HN that, unlike the expert policy
π?, can generalize to unseen data.
Each training iteration begins by setting the probability p (line 3) of using π? in the current policy π. In the
first iteration only π? is used but in later iterations π becomes stochastic as for each action we use π? with
probability p and the learned policy from the previous iteration hi−1 with probability 1− p (line 4). Then
π is used to predict each training instance s (line 6). For each action ŷt , a CSC example is generated (lines
7-12). The features Φt are extracted from s and the previous actions ŷ1:t−1 (line 8) and are expected to be
useful in predicting the current action ŷt . For example, in part-of-speech tagging, commonly used features
include the word we are predicting, the words preceding it and following it, as well as the tag predicted for
the previous word. The cost for each possible action y j

t is estimated by predicting the remaining actions
y′t+1:T needed for s using π (line 10) and calculating the loss incurred given y j

t w.r.t. the correct output
for s using ` (line 11). The features together with the costs for each possible action form a CSC example
(Φt ,ct) (line 12). At the end of each iteration the CSC examples obtained from all iterations are used by
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the CSC learning algorithm to learn the classifiers for a new Hi (line 13).
When predicting the training instances (line 6), the policy learned in the previous iteration Hi−1 is used,
thus the CSC examples used to learn Hi in the current iteration depend on the predictions of Hi−1. The
degree to which it is used depends on the probability p set in the beginning of each iteration. By gradually
decreasing the use of the expert policy in the current policy, the policy is adjusted to its own predictions,
thus learning how to predict sequences of actions jointly.
The learning rate β determines how fast the current policy π moves away from π?. A special case is
obtained when β = 1, also referred to as pure policy iteration or parameter-free version of the algorithm.
In this case, π? is used only in the first iteration and in the following iterations π uses only the policy
from the previous iteration Hi−1. This setting renders DAGGER training deterministic (π is no longer
stochastic), but it also becomes harder due to the abrupt transition from the expert to the learned policy.
[8] showed that DAGGER can perform well even in this case and we consider this parameter-free version
for the remainder of this paper.

4.2 Handling missing labels
As mentioned in the previous section, the loss function ` in DAGGER is only used to compare complete
action sequences against the correct output. In other words, it does not need to decompose over the actions
in the sequence in order to evaluate them independently. Since we only need to evaluate complete action
sequences, this gives us the option to use loss functions that ignore actions which are taken as intermediate
steps in predicting an instance. For example, in a sequential tagging task (e.g. part-of-speech) we could
use a loss function that only takes into account the tag predicted for the last token in a sentence, even
though the prediction of this tag is dependent on the predictions for the previous tokens.
The use of non-decomposable loss functions in DAGGER can be very useful when the training data has
missing labels. When generating a CSC training example (lines 10-11), we do not need to know whether
an action y j

t is correct or not, we just need to evaluate what the effect of y j
t is on the loss incurred by the

complete action sequence. Thus, the classifiers forming Hi are trained to predict actions that minimize the
loss on the instance, independently of what the correct action might have been.
The only component in DAgger for which knowledge of all the correct actions is assumed is the expert
policy π? for the training instances. As explained above, π? is used progressively more sparingly as the
learning progresses, and in the parameter free version of DAgger we consider in this work it is only used
in the first iteration. Given its limited impact on the learning, we define π? to be returning randomly or
heuristically chosen actions that allow it to predict the instance correctly w.r.t. the loss function. Returning
to the sequential tagging example, assuming that the tags for all the tokens are missing except for the last
token in the sentence, the expert policy could return a random action for all tokens apart from the last one,
for which the (known) correct tag must be returned.

4.3 Joint entity filtering and relation extraction
In this section we describe how we learn the entity filter described in Section 3 jointly with relation
extraction using DAGGER. Each instance consists of a candidate answer, a question entity and a sentence,
and we decompose its prediction in two stages: first we apply the entity filter and decide whether the
candidate answer is of the correct entity type for the relation in question, and then we apply the relation
extractor to decide whether the sentence expresses this relation between the answer and the query entity.
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If the prediction for the first stage is negative (i.e. the candidate answer is not of the correct type), then
the second stage is not reached as the prediction for the instance is negative by definition (i.e. the relation
is not expressed in the sentence).
Following the description of DAgger in Section 4, the policy Hi learned in each iteration consists of a
separate binary classifier for each stage. As discussed in Section 3, we have labels for relation extraction
obtained by distant supervision, but not for the entity filter. Therefore, we take advantage of the capacity
of DAgger to learn with non-decomposable loss functions and define ` to be 0 in case the prediction for
the relation extraction stage is correct and 1 otherwise. We define the expert policy π? for the missing
entity filter labels heuristically, by assuming that all candidate answers are of the correct type. While far
from perfect, defining the expert policy in this way forces DAgger to search for instances in which this
assumption leads to incorrect relation extraction predictions and learn from them a suitable entity filter.
For the relation extraction stage, the expert policy returns the labels obtained by distant supervision.
Since the losses returned are either 0 or 1, the CSC learning task is equivalent to ordinary binary classifi-
cation learning. Therefore we use the AROW classification learning algorithm, as in our re-implementation
of the approach of [1]. For the entity filter we extract the features describing the candidate answer and for
the relation extractor the features describing the relation between the candidate answer and the question
entity. Using the same features and classifier ensures a fair comparison between the two approaches.

5 Evaluation
For evaluation we used two relations, architect name and completion year for historical buildings in the
city of Edinburgh. For each of the 138 listed historical buildings mentioned in Wikipedia1 we used a
search engine to look for the answer entities for the relations in question. In case an answer could not
be found or if conflicting answers were found in the first page of results we omitted the building from
the answer key of that relation. The latter occurred relatively often, since historical buildings such as
churches and castles are likely to be built and rebuilt at different points in time by different architects.
The assumption that there exists only one correct answer per instance is only employed to facilitate the
evaluation; our approach can return multiple answers as discussed in Section 2. As a result, we obtained
60 completion year tuples and 68 architect name tuples. It is worth pointing out that while the building
names were obtained from Wikipedia, many of the answers were not on Wikipedia but on other websites,
thus highlighting the difficulty of the dataset.
Recall that the system can provide more than one answer for each question entity; hence the answers
are ranked according to the number of instances classified as positive for that answer. We used two
evaluation modes. The first considers only the top-ranked answer (top), whereas the second considers all
the answers returned until either the correct one is found or they are exhausted (all). In all we define recall
as the number of correct answers returned over the total number of question entities, and precision as the
chance of finding the correct answer while traversing those returned. Finally, in the all mode we evaluated
precision at all recall points by varying the thresholds used in the respective classifiers and, following [7],
we report average precision (AP) [16]. This evaluation measure provides an assessment of how well a
system trades precision for recall.

1http://en.wikipedia.org/wiki/Category:Listed_buildings_in_Edinburgh
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5.1 Data preprocessing
The first stage in our approach described in Section 2 is to collect documents from the web using a search
engine. The queries are formed by combining each question entity (historical building in our case) with
the keywords provided for the relation of interest. These are submitted to Bing via its Search API service
and the top 300 results for each query are obtained. We download the pages linked in the results and
extract their textual content with BoilerPipe2[17].
We then process the texts to extract sentences containing the question entities and candidate answers using
components of the Stanford CoreNLP toolkit3. We first tokenize the text contained in each page and split
it into sentences. Then we try to match the question entity with tokens in each of the sentences, allowing
for minor differences in tokenization, whitespace and capitalization. If a sentence contains the question
entity, we parse it using the parser of [18] and look for candidate answers of two types, depending on the
relation: single-token numbers (candidate answers for relations involving years, monetary sums, etc.) and
consecutive tokens tagged as proper names by the part-of-speech tagger (candidate answer for relations
involving named entities, e.g. persons, countries, streets, etc.). Other types of candidate answers can be
supported, as long as they span contiguous tokens and can be extracted using string matching or heuristics
based on syntactic information.

5.2 Results
We first perform web data preprocessing (Sec. 5.1) obtaining 974K and 4.5M labeled instances for the
completion year and the architect name relation respectively. The datasets are highly imbalanced (i.e.
most sentences do not express the relation in question) and in both relations there are question entities
for which no positive instance was generated. We did not remove these entities from the evaluation since
we consider the web data preprocessing to be part of our system and we want to be able to measure the
impact of future improvements in this component. Furthermore, for many buildings the correct answer was
mentioned in very few sentences (sometimes none), and Wikipedia did not contain any such sentences,
facts indicative of the difficulty of the task. Note that such rare entities are commonly ignored in recent
distant supervision approaches.
We split the data for both relations in development and testing, each containing half of the instances. All
development and feature engineering was done using 4-fold cross-validation on the former, while testing
was used only to report results. For the two-stage relation extraction system (henceforth 2stage) we used
12 training iterations with DAgger. Since AROW training is stochastic due to the random shuffling of its
training examples, we average the results over three runs.
We ran experiments with three systems; our re-implementation of [1] described in Section 3 (henceforth
Mintz), the relation extraction approach jointly learned with the entity filtering using imitation learning
described in Section 4 (henceforth Imit) and a baseline that for each question entity returns all candidate
answers for the relation ranked by the number of times they appeared with the question entity and ignoring
all other information (henceforth Base).
Results by all models on the test data are reported for both relations in Table 1. A first observation is
that the architect name relation is substantially harder to extract since all models achieve worse scores
than for the completion year relation. More specifically, Base achieves respectable scores in top mode

2http://code.google.com/p/boilerpipe/
3http://nlp.stanford.edu/software/corenlp.shtml
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R P F R P F AP
top top top all all all all

Base 0 0 0 62 0.2 0.4 -
Mintz 15 26 19 23 17 20 21
Imit 26 65 37 30 55 39 51
Base 28 28 28 90 10 18 -
Mintz 52 71 60 67 68 67.5 69
Imit 50 68 58 67 67 67 76

Table 1: Results for the 3 systems on building-architect (top) building-completion year (bottom).

in completion year extraction, but it fails completely in architect name. This is due to the existence of
many other names that appear more frequently together with a building than that of its architect, while
the completion year is sometimes the number most frequently mentioned in the same sentence with the
building. In addition, Base achieves the maximum possible all recall given the data preprocessing, since
if there is a sentence containing the correct answer for a question entity it will be returned. However this
comes at a cost of very low precision.
Both the machine-learned models improve upon Base substantially on both datasets, with the Imit model
achieving the best performance with a wide margin in architect name extraction. The gains are particularly
pronounced in terms of precision, with average precision being 30 points higher. In completion year
extraction the differences are smaller, with Mintz being slightly better than Imit. These small differences
are expected since recognizing completion years is much easier than recognizing architect names, thus
learning an entity filter for them is less likely to be useful. Nevertheless, it helps Imit to achieve a better
precision-recall trade-off, as its average precision is seven points higher. Furthermore, inspection of the
weights learned for the entity filter showed that it had learned some useful distinctions, for example that
being preceded by the word “between” as in “built between 1849 and 1852” renders a number less likely
to be a completion year.
Finally, we examined the disagreements at the sentence level between the predictions of Imit and the noisy
labels obtained by distant supervision. We found that Imit frequently predicted the relation correctly, but
the answer was incorrect due to multiple entities with the same name. This is in addition to the noisy
positive labels commonly discussed in the distant supervision literature. Also, in many cases Imit failed
to predict correctly positive instances due to feature sparsity, suggesting it as a direction for future work.

6 Related work
The most closely related relation extraction learning approach to ours was proposed by [19]. While they
also learned a relation extractor using a few tuples and a search engine as input, the sentences were
collected from the web via queries containing both the question and the answer entities from the input
tuples, while we use the question entities only for this purpose. Such an approach would not be applicable
in the case where a list of candidate answers is unavailable, or inefficient if the list is large, as is the
case with relations studied in our experiments. Furthermore, it is unclear whether an extractor trained on
sentences restricted to contain certain candidate answers would generalize well to others. On the other
hand, our proposed architecture collects and labels sentences without making this assumption and learns
an appropriate relation extractor.
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Another approach that learns from a small set of tuples is Snowball [20]. However, it requires NER
components to identify the arguments of the relation of interest. Furthermore, the authors found that
most of the errors in their experiments were due to NER errors, thus stressing the importance of this
requirement. A similar approach by [21] does not require NER, but their evaluation is restricted to the
year of birth relation, for which answer recognition is not crucial to success, as we also found in our
experiments with the completion year relation.
Other related approaches include systems developed under the open information extraction paradigm [22].
While many of these systems do not assume any manually annotated data (e.g. TextRunner [23] obtains
its supervision from the output of a syntactic parser), the relations extracted are labeled not according to a
specification provided by the user but using words from the sentence in which they were found. Thus, if
the goal is to find answers for a particular relation which is the case in this work, the user would still need
to define a mapping from the labels of the extracted relations to the relation of interest. The never-ending
language learner [24] uses a seed ontology to provide labeled relations but the order in which answers
to particular relations and entities are extracted is not dictated by the user but by the learning algorithm.
In contrast, our approach allows the user to specify the entities and the relations to which answers are
needed. A disadvantage though is that it cannot identify new entities to extract answers for.

7 Conclusions
In this work we introduced a new framework for learning relation extraction using only a small set of
seeds and a search engine. Unlike most previous work it does not rely on a large existing KB to extract
lists of entities participating in the relations. Furthermore, we show how to use imitation learning in
order to learn an entity filter jointly with relation extraction, even though we did not have labels for the
former. We evaluated our approach on two relations and obtained good results using around 30 tuples.
Furthermore, we demonstrated that learning the entity filter jointly with relation extraction outperforms
a typical distantly supervised approach using the same features and classifier. We believe that given its
minimal requirements the proposed framework is better suited to the needs of real users. In addition, the
application of imitation learning to tasks with missing labels is likely to be of interest to other tasks facing
this issue.

8 Difficulties and Future Work
The main cost in running the relation extraction framework is the manual creation of the seed examples.
For example, for the work described above, the first author had to manually create two lists containing
pairs of historical buildings and their architects and historical buildings and their years of completion. For
both relations this involved time-consuming work reading pages from the internet (despite both lists being
relatively short). It was this bottleneck in creating the seed lists which prevented us from applying the
system to additional relations, such as spatial descriptions.
In order to address this issue the two authors supervised an undergraduate Part II project in the Computer
Laboratory looking at the use of crowd-sourcing to create the initial seed lists. The project was carried
out by Joaquim dSouza, and employed the crowd-sourcing service Crowdflower. The results were highly
promising: for relations including films-directors, directors-birth place, states-ruler, and rulers-date of
abdication, the system was able to elicit high-quality lists with small amounts of time and monetary costs.
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If the system were to be fully deployed within the SpaceBook application, the obvious next step would be
to use the crowd-sourcing system to elicit many lists of seed relations for relations relevant to SpaceBook,
and then run the relation extraction system using these seeds as input. In principle this would allow many
of the relations in the SpaceBook city model database to be populated automatically with very little manual
intervention (beyond the manual annotation carried out by the crowd-source workers).
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