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Executive summary
This deliverable describes the activity recognition module developed for the SPACEBOOK project. The
module is based on a novel Bayesian approach to activity recognition, estimating the posterior probabil-
ities of different activities using Bayes’ rule. The approach can handle any type of activities as long as
it is possible to estimate the conditional probabilities of potential observations, and easily scales to large
numbers of activities. The report describes the methodology, the implementation of the module as well as
results from experiments applying the module to user data.
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1 Introduction
One aim of SPACEBOOK is to generate proactive dialogue, as opposed to reactive dialogue in which
the system simply responds to user utterances. A key element in proactive dialogue is to guess or infer
the current activity of the user in order to aid them in their task. This deliverable describes the activity
recognition module of SPACEBOOK, whose purpose is to estimate the current intent of a user.
Originally, the intent was to apply a model-based approach to activity recognition, without the need to
estimate conditional probabilities of actions given a current activity. However, it turned out that the model-
based approach did not scale well to the thousands of potential activities needed to model pedestrian
behavior in SPACEBOOK. Instead, we had to develop a different approach from scratch.
In our novel approach, each activity has an associated likelihood of being the activity currently pursued
by the user, i.e. a normalized posterior probability that is updated as a result of each new observation.
An algorithm for activity recognition can either output the most likely activity or a list of the most likely
activities together with their relative likelihoods.
Our approach has two main advantages: it is independent of the actual activities and sensors used in a
particular instance of activity recognition, making it a flexible choice with potential use in many different
applications. The only specification that the algorithm needs as input is the conditional probability of
making a certain observation given a particular activity, which can either be provided by a system expert
or estimated experimentally. Our approach also appears to scale very well to instances that include many
thousands of different activities, as is the case in SPACEBOOK.
The SPACEBOOK activity recognition module is solely based on the GPS signal to track a pedestrian.
The module relies on the SPACEBOOK city model to represent the geographical area in which the user
is moving. The activity recognition module receives as input a sequence of GPS signals and outputs a
ranking of the user’s most likely activities.
Existing approaches to activity recognition using GPS signals include hierarchical conditional random
fields [1] and clustering to detect recurring patterns of visiting locations [2, 3]. Several researchers have
also applied data mining to trajectory data, using the information to build ontologies [4, 5, 6, 7, 8] or
simply to extract meaningful patterns [9].
The work presented in this deliverable has been submitted to the Workshop on Positioning, Navigation
and Communication (WPNC’14), to be held in Dresden, Germany, March 11-13, 2014.

2 Methodology
Accurately estimating the current activity of a user is a challenging problem since many variables are
unobservable. Depending on the sensors used, it may be hard to establish precisely what the user is
doing, and as already mentioned, a user’s intention is unobservable to any sensor. We therefore opt for a
probabilistic framework where the likelihood of potential activities are expressed using probabilities.
Formally, our approach attempts to infer the posterior probability P(A|O) of each potential activity A,
where O is the sequence of observations. Using Bayes’ rule we can rewrite the posterior probability
as P(A|O) = αP(O|A)P(A), where α is a normalization constant, P(O|A) is the conditional probability
of observing O given that the activity is A, and P(A) is the prior probability of activity A. The prior
probability P(A) can either be estimated using prior knowledge about the relative frequency of different
activities or, if such information is unavailable, simply be defined as a uniform distribution.
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We use a Markov decision process, or MDP, to approximate the effects of repeated decisions of the pedes-
trian. An MDP is composed of a set of states, each representing a possible current situation, and a set
of actions, each representing a possible decision. In this setting, an observation can be viewed as a state-
action pair, and the set of observations O= 〈s1,a1,s2,a2, . . . ,sk+1〉 as a sequence of such state-action pairs.
Given an initial state s0, we can express the conditional probability P(O|A,s0) as

P(O|A,s0) =
k

∑
i=1

P(ai|A,si)P(si+1|si,ai) = β

k

∑
i=1

P(ai|A,si).

The constant β reflects the fact that the transition probabilities P(si+1|si,ai) are the same for all A.
Our approach is to compute P(A|O) based on the observation sequence O and the conditional probabilities
P(ai|A,si), i.e. for each state si, the probability of the user choosing action ai when pursuing activity A.
In other words, what matters are the decisions made by the user at each decision point. The conditional
probabilities P(ai|A,si) can either be specified by a domain expert or estimated experimentally.
In addition to computing posterior probabilities, we add a filtering mechanism that allows us to weigh
posterior probabilities according to some probability distribution. Specifically, if Φ is a probability dis-
tribution on activities, the filtered posterior probability of a given activity A and observation O equals
F(A|O) = Φ(A)P(A|O). Although the distribution Φ is similar to the prior probability distribution on
activities, we distinguish between the two concepts since, unlike the prior probability, we allow the distri-
bution Φ to vary over time.

3 Implementation
In this section we describe the concrete implementation of the SPACEBOOK activity recognition module.
The module makes heavy use of the city model, so we first describe the components of the city model
relevant to the activity recognition module. The only input to the activity recognition module is the
sequence of GPS signals of a given user. The absense of more fine-grained sensory data makes activity
recognition challenging since our module cannot observe, for example, whether a user stops to look at the
menu of a restaurant or to browse the window of a shop.

3.1 City Model
The activity recognition module relies on three components of the SPACEBOOK city model: a road
network that represents the physical connections of a city (roads, cycleways, pedestrian zones, etc.), a
database containing information about specific points of interest in the area (shops, restaurants, museums,
etc.), and a viewshed that enables fast computation of whether a given point of interest is visible from an-
other location. We refer to deliverables D3.1.2 and D3.3.2 for details on how the city model is constructed,
and only describe the relevant features here.
The road network consists of junctions (where roads meet) and edges between junctions. Each edge is a
sequence of linear segments that describe the twists and turns of the corresponding road segment. Each
road segment also includes information about the type of road and the street name (in cases where the
road segment is part of a street).
The database contains information about points of interest in the city. Each point of interest has a type, a
name, and an estimated location; the exact location is in general difficult to ascertain. Each point of interest
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is connected to the road network by projecting the estimated location onto the closest road segment. In
case the point of interest is a building or part of a building, the projected location provides an estimate of
where the entrance is located.
In experiments with the activity recognition module we used the city model for both Edinburgh and Stock-
holm. The Edinburgh city model contains approximately 8,750 junctions, 6,800 edges, and 3,300 points
of interest. The Stockholm city model contains 7,700 junctions, 3,000 edges, and 1,000 points of interest.
Figure 1 shows part of the road network for Edinburgh, including junctions and edges; street names and
other information are excluded.

Figure 1: Part of the road network for Edinburgh.

3.2 Activity recognition
We divide activities into two categories: points of interest and abstract activities. The former includes
specific locations that the user may want to visit, while the latter includes general activities such as “look
for a restaurant”, “visit a shop”, “go to a bar”, etc. When pursuing a general activity it is assumed that the
user is not looking for a specific location, although the user may prefer some locations over others. We
also include a special activity associated with ambling, i.e. exploring the city without any particular goal
in mind.
For each category, the output of the recognition module is a list of the N most likely activities of that
category. Since P(A|O) tends to be very small and it is the relative probabilities that matter, we normalize
the output such that the most likely activity A∗ of each category has a score of 100. Each other activity A
has a score of 100 ·P(A|O)/P(A∗|O). For some points of interest we estimated the prior probability from
user generated content, approximating the “popularity” of each. For the remaining points of interest we
assumed a uniform prior distribution.
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When using GPS signals, the only relevant information available is the location and direction of the user.
We therefore focus on the relevant choices that the user makes with respect to location and direction.
Our implementation ignores the user velocity since variation in speed may depend on factors (e.g. user
mobility) that are unrelated to the types of activities that we consider. Although different activities may
spur the user to walk at different speeds, it is mainly direction that determines what location or activity
the user is interested in.
If the system believes that the user has finished doing an activity, there is a reset mechanism that essentially
restarts the system and resets the posterior probabilities of activities according to the prior distribution.
In this way, the system has a larger chance of not becoming confused when the user is pursuing several,
apparently conflicting, goals. The current reset mechanism is inspired by Pareto’s principle: when the top
hypothesis dominates the others by a factor that exceeds a threshold, the system resets itself.

3.2.1 Points of Interest

When the goal is to reach a specific point of interest, we assume that the user has basic knowledge of the
actual location. To reach a specific point of interest the user would either have to look at a map or ask
for directions. If the user has no idea of the location, there is little the recognition module can do to infer
the current activity. We can therefore use the city model to estimate the likelihood of going in a certain
direction given that the goal is to reach a specific point of interest.
Because of uncertainty in the GPS signal, it is difficult to observe detailed choices of the pedestrian with
respect to location and direction. We therefore focus on four main decisions:

1. Decide which direction to go at a junction.

2. Change direction along an edge of the road network.

3. Decide when to stop at a particular location.

4. Decide when to start walking again.

In each case we take uncertainty into account, e.g. we do not consider that a user has stopped until several
seconds have passed, otherwise a noisy GPS signal could lead to false beliefs about the user’s movements.
For each junction j and each point of interest poi, we precompute the optimal distance dist( j, poi) between
j and poi along the road network. Let L(k| j, poi) be the likelihood of going towards a neighboring junction
k given that the current location is junction j and the goal is to reach poi. We use the optimal distances to
estimate L(k| j, poi) as

L(k| j, poi) =
dist( j,k)+dist( j, poi)−dist(k, poi)

2 ·dist( j,k)
,

where dist( j,k) is the distance between the neighboring junctions j and k. Note that 0 ≤ L(k| j, poi) ≤ 1
since dist( j, poi) and dist(k, poi) can differ by at most dist( j,k). A likelihood of 0 would drive the poste-
rior probability P(poi|O) to 0, so we compute an adjusted likelihood L̂(k| j, poi) = 0.1+ 0.8 ·L(k| j, poi)
such that 0.1≤ L̂(k| j, poi)≤ 0.9. Finally, we compute a normalized likelihood as

LN(k| j, poi) =
L̂(k| j, poi)

∑n∈N( j) L̂(n| j, poi)
,
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where N( j) is the set of all neighboring junctions of j. Each time the user makes a choice of which
direction to go from a given junction, we use the normalized likelihood to update the posterior probability
of each point of interest. This approach is extended to the case for which the user changes direction along
the current edge of the road network.
Before presenting the relative likelihood of different points of interest, we filter the posterior probabilities
by a proximity factor, i.e. a probability distribution Φ that considers points of interest in the near proximity
as being more likely. The intuition is that although many points of interest may lie in a given direction,
locations that are closer are more likely targets. However, we do not want to incorporate the proximity
factor into the actual posterior probabilities, which would cause (former) proximity to persist in memory
long after the user has left a point of interest behind.
In the case of ambling, we assume that the goal of the user is to visit parts of the city where they have
not already been. We compute a normalized likelihood LN(k| j,ambling) in a similar way to LN(k| j, poi).
Going towards intersection k is more likely if the user has not previously walked along the edge ( j,k).
Again, the same strategy can be applied when the user changes direction along the current edge. The
normalization also makes it possible to compare the posterior probability of ambling with those of points
of interest.
When the user stops, we assign a likelihood of 0.9 to points of interest in the near proximity, and a
likelihood of 0.1 to all other points of interest, including ambling. The intuition is that points of interest
in the proximity of the user are likely targets when the user stops. When the user starts walking again, we
assign a likelihood of 0.9 to points of interest not in the vicinity, while the likelihood of nearby points of
interest depends on the duration that the user has spent in their vicinity. If the user stopped by chance or
due to an erroneous GPS signal, this mechanism will cancel the boost given to points in the vicinity. On
the other hand, if the user spent an extended amount of time in the vicinity of a point, it is more likely that
the point was a target.
Our system incorporates an optional mode that uses Gaussian distributions to model the likelihood of
specific points of interest as a function of duration spent in its proximity. The mean and variance of the
distribution depends on the type of location. Getting cash from an automatic teller machine is typically
much quicker than eating a meal as a restaurant, and these differences are reflected in the distribution.
However, it was outside the scope of SPACEBOOK to collect data regarding the duration of different types
of activities, so in our system the distributions are manually crafted to reflect our knowledge of different
types of points. This is also the reason why the mechanism is optional: our system can incorporate this
information if available but will function even when the information is missing. If the optional mode is
turned off, all durations are considered equally likely.
An interesting extension of this mechanism would be to take the time of day into consideration when
estimating the likelihood of an activity. For example, if a user stops near a restaurant and a bar, the
restaurant is a more likely target during lunch hour, but the bar is a more likely target at night. However,
estimating this information was again outside the scope of SPACEBOOK.

3.2.2 General activities

As for general activites, we consider the same four decisions as before. Apart from ambling, we make the
assumption that each general activity is associated with a set of points of interest, and that the likelihood
of a general activity is proportional to the maximum posterior probability of any point of interest in its
associated set. However, just as before, repeatedly incorporating a high likelihood into the posterior
probability creates a memory which is difficult to erase. We therefore apply the maximum posterior
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probability of individual points of interest a posteriori, as a filtering factor, just like the proximity factor
for individual points of interest.
The only case for which there is a qualitative difference between the likelihood of individual points of
interest and that of general activities is when the user starts walking again. Browsing the menu of a
restaurant and then leaving should make the probability of that restaurant go down, but the probability
of looking for a restaurant in general should go up. The posterior probability of general activities are
therefore only updated when the user starts walking again after having stopped. We use the same strategy
based on Gaussian distributions over the duration to estimate the likelihood of a given general activity
when the user starts walking.
In the case of general activities we can model different types of events associated with the same point of
interest, as shown in Figure 2, which superimposes the likely duration of browsing the menu of a restaurant
and the likely duration of having a meal. As seen in the figure, we again adjust the likelihood to a number
in the range [0.1,0.9] to avoid multiplication by zero.

Figure 2: Example probability density function for restaurants.

3.3 Familiarity and Visibility
So far, our implementation makes an assumption that the user always knows where they are going, an as-
sumption that clearly does not always hold, especially if the user is a tourist or visitor. For this reason, the
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recognition module includes a simple heuristic for estimating how familiar the user is with the surround-
ings. To compute the heuristic we keep track of the total distance d travelled by the user and compare it to
the optimal distance d∗ from the user’s initial location to the current location. We then compute a factor
U representing how unfamiliar the user is with the surroundings as

U = 1− d∗

d
.

In other words, if the user travelled straight to the current location, U = 0. On the other hand, if the user
took a much longer route, U approaches 1. Intuitively, the choices that the user makes regarding which
direction to go should matter more when we think that the user is familiar with the surroundings. We
incorporate familiarity into the conditional probability of walking towards junction k from junction j as
follows:

(1−U)LN(k| j, poi)+U
1

|N( j)|
For U = 0, the conditional probability equals LN(k| j, poi), i.e. the same as before. For U > 0, we assign
less weight to LN(k| j, poi) and proportionally more weight to the uniform probability 1/|N( j)| (i.e. each
neighbor is equally likely).
We also take into account whether a point of interest is visible from the user’s current location. Intuitively,
if the user can see a point of interest, choosing whether or not to go towards it becomes more informative.
Let V (poi) be a boolean function that returns 1 if poi is visible from the current junction and 0 otherwise.
We compute an individual unfamiliarity factor for each point of interest as follows:

U(poi) = (1−V (poi))
(

1− d∗

d

)
.

In other words, the user is considered to be familiar with the location of a point of interest (U(poi) = 0) if
they either walked straight to the current location or can see the point. We can now substitute U(poi) for
U in the conditional probabilities. We can also generalize this idea and consider intermediate probabilities
for V (poi) representing uncertainty.

4 Results
We ran experiments both in Stockholm and Edinburgh, with the goal of testing the features of the activity
recognition module. Figure 3 shows a recorded trajectory of a user in the Stockholm experiments, recorded
during work on the dialogue system of SPACEBOOK [10]. The user was told to find a postbox, with no
preference for particular targets. The figure shows the postbox eventually found, as well as a restaurant
and a shop along the user’s path.
Figure 4 shows how the relative ranking for the three particular points of interest in the figure varies over
time. For clarity we have excluded many other points of interest in the vicinity. Direction likelihood and
proximity filters apply. As we can see, the system initially selects “restaurant” as the top pick, since its
one of the nearest targets from the starting point.
As the user walks towards the bus stop in the figure, the probability of “restaurant” and “postbox” drops
(both due to the proximity filter and the direction likelihood). Since the user walks in a perpendicular
direction to the shop, the probability of “shop” increases slightly.
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Figure 3: Example trajectory from the Stockholm city model.

Once the user reaches the bus station and turns back, the direction likelihood for both “restaurant” and
“postbox” increases, while that of “shop” remains more or less constant. In this phase of the experiment,
we can see the effect of proximity filtering. Both the postbox and the restaurant are in the same direction,
but proximity filtering boosts the probability of “restaurant”. Once past the restaurant, the direction likeli-
hood drops rapidly and is then compounded by proximity filtering. As the user closes in on the target (the
postbox), the likelihood of this location being the target greatly increases and becomes the top pick of our
system.
At the end of the experiment, the system reports the following three points of interest as the top picks:

• restaurant (100) [not shown]

• post box (98.58)

• fast food (76.79) [not shown]

Each of these locations has a posterior probability less than 0.07, and there is a very long tail of results,
each with a very small posterior probability.
In the experiment we can see how decoupling the direction likelihood from proximity filtering allows our
system to be much more responsive. Direction likelihood is aggregated, while filtering is only applied
when displaying the results.
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Figure 4: Relative ranking of three points of interest.

In the Stockholm experiment, trajectories included very few stops, making it difficult to estimate the
likelihood of general activities. In another experiment from the Edinburgh city model we simulated a user
making two short stops followed by a long one. In the vicinity of the two short stops were an ATM, a
restaurant, and a bar. In the vicinity of the long stop were an ATM, a restaurant, and a shop. Figure 5
shows the relative ranking of the four associated general activities over time. After the two short stops,
the likelihood of “shop” decreases drastically compared to the others.
Figure 6 shows the ranking of general activities for the same trajectory, but this time we assume that the
activity takes place at night, and that the probability density functions of different activities are adjusted
for the time of day. At night, the probability of going to a restaurant or shop drops drastically, while the
probability of going to a bar or getting money from an automatic teller machine increases correspondingly.
As previously mentioned, we did not have data to support the generation of opening times for different
points of interest, but our experiments show that the module can incorporate such information.
Figure 7 shows the relative ranking of three points of interest along the trajectory: a restaurant in the
proximity of the two short stops, and a restaurant and a shop in the proximity of the long stop. The
likelihood of the first restaurant is very high around the time of the two short stops, but then decreases
rapidly, unlike the likelihood of the general activity “restaurant” in Figure 5.
Finally, Figure 8 shows an example trajectory from the Edinburgh city model. This experiment was
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Figure 5: Relative ranking of general activities.

Figure 6: Relative ranking at nighttime.
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Figure 7: Relative ranking of three points of interest.

designed to test how familiarity and visibility affects the posterior probability of different targets. The
trajectory intentionally describes a loop, simulating a user who is not familiar with the surroundings. We
fed the trajectory into the activity recognition module, first with familiarity and visibility turned off, then
turned on.
With familiarity and visibility turned off, the points of interest ranked in the top 20 at the end of the
trajectory included none that were visible. In contrast, with familiarity and visibility turned on, visible
points of interest accounted for 11% of the posterior probability in the top 20, showing that the approach
is able to boost the likelihood of visible targets.

5 Conclusion
For this deliverable we have developed a Bayesian approach to activity recognition in which the posterior
probability of each activity is estimated using observations made regarding a user’s behavior. We tested
this approach using the SPACEBOOK system in which observations are GPS signals indicating the location
and direction of users.
In our implementation we only consider two types of activities: those corresponding to reaching a specific
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Figure 8: Example trajectory from Edinburgh.

point of interest, and general activities for satisfying a specific type of need (go to a restaurant, purchase
an item in a shop, etc.) The flexibility of our Bayesian approach would make it easy to include other types
of activities, or more fine-grained activities (e.g. find an Italian restaurant).
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